我試圖按照this tutorial使用以下數據集:Mushroom Classification。我正在尋找監督分類的問題,我想我明白了。對比錯誤,監督分類
運行下面的代碼後...
library(caret)
dataset = read.csv("mushrooms.csv")
dim(dataset)
sapply(dataset, class)
head(dataset)
levels(dataset$class)
set.seed(100)
inTrain <- createDataPartition(y=dataset$class,p=.75,list=FALSE)
str(inTrain)
training <- dataset[inTrain,]
testing <- dataset[-inTrain,]
nrow(training)
nrow(testing)
control <- trainControl(method="cv", number=10)
metric <- "Accuracy"
train.lda <- train(class ~., data=training, method="lda", trControl=control)
...我看到的數據集有8124行和22個變量-plus的classifier-。
dim(dataset)
[1] 8124 23
但是執行train
我收到以下錯誤時:
Error in `contrasts<-`(`*tmp*`, value = contr.funs[1 + isOF[nn]]) :
contrasts can be applied only to factors with 2 or more levels
尋找各地的網絡,甚至在這裏堆棧溢出,我發現的解釋是,我的預測只有一個因素水平。就像class
變量只有一個值?儘管如此,之前在代碼中我檢查了該變量的級別,並且我得到它的級別爲2,因爲它需要兩個值。
levels(dataset$class)
[1] "e" "p"
因此,我不明白爲什麼我得到錯誤。我的推理有什麼問題?我究竟做錯了什麼?
謝謝。
樣品要求:
structure(list(class = structure(c(2L, 1L, 1L, 2L, 1L, 1L, 1L,
1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("e",
"p"), class = "factor"), cap.shape = structure(c(6L, 6L, 1L,
6L, 6L, 6L, 1L, 1L, 6L, 1L, 6L, 6L, 1L, 6L, 6L, 5L, 3L, 6L, 6L,
6L, 1L, 6L, 1L, 1L, 1L, 3L, 6L, 6L, 3L, 6L, 1L, 6L, 6L, 6L, 1L,
6L, 5L, 6L, 6L, 1L, 1L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 3L, 6L,
6L, 1L, 6L, 6L, 1L, 3L, 1L, 6L, 6L, 5L, 1L, 1L, 1L, 1L, 3L, 6L,
3L, 6L, 6L, 3L, 1L, 3L, 6L, 1L, 3L, 6L, 3L, 6L, 3L, 6L, 6L, 3L,
6L, 6L, 6L, 1L, 6L, 3L, 5L, 6L, 1L, 6L, 6L, 6L, 6L, 3L, 6L, 1L,
6L), .Label = c("b", "c", "f", "k", "s", "x"), class = "factor"),
cap.surface = structure(c(3L, 3L, 3L, 4L, 3L, 4L, 3L, 4L,
4L, 3L, 4L, 4L, 3L, 4L, 1L, 1L, 1L, 3L, 4L, 3L, 3L, 4L, 4L,
4L, 3L, 3L, 4L, 4L, 1L, 3L, 3L, 4L, 4L, 4L, 4L, 1L, 1L, 4L,
1L, 3L, 4L, 4L, 1L, 4L, 3L, 4L, 4L, 3L, 4L, 4L, 4L, 3L, 3L,
4L, 3L, 4L, 1L, 3L, 3L, 4L, 1L, 4L, 3L, 4L, 4L, 3L, 3L, 4L,
4L, 1L, 1L, 4L, 1L, 4L, 3L, 3L, 3L, 4L, 4L, 4L, 3L, 4L, 1L,
1L, 4L, 3L, 3L, 3L, 4L, 1L, 1L, 3L, 4L, 4L, 3L, 3L, 4L, 3L,
3L, 4L), .Label = c("f", "g", "s", "y"), class = "factor"),
cap.color = structure(c(5L, 10L, 9L, 9L, 4L, 10L, 9L, 9L,
9L, 10L, 10L, 10L, 10L, 9L, 5L, 4L, 9L, 5L, 9L, 5L, 10L,
5L, 10L, 9L, 9L, 9L, 10L, 9L, 5L, 10L, 10L, 9L, 10L, 5L,
10L, 10L, 4L, 5L, 10L, 10L, 10L, 10L, 5L, 9L, 10L, 9L, 10L,
9L, 10L, 10L, 5L, 9L, 9L, 5L, 9L, 10L, 4L, 9L, 10L, 5L, 4L,
10L, 10L, 10L, 9L, 5L, 9L, 10L, 10L, 4L, 10L, 9L, 10L, 5L,
10L, 10L, 9L, 5L, 5L, 5L, 5L, 9L, 4L, 4L, 10L, 5L, 9L, 9L,
5L, 5L, 5L, 9L, 10L, 10L, 5L, 9L, 5L, 10L, 9L, 9L), .Label = c("b",
"c", "e", "g", "n", "p", "r", "u", "w", "y"), class = "factor"),
bruises = structure(c(2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L,
2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L,
2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L,
2L), .Label = c("f", "t"), class = "factor"), odor = structure(c(7L,
1L, 4L, 7L, 6L, 1L, 1L, 4L, 7L, 1L, 4L, 1L, 1L, 7L, 6L, 6L,
6L, 7L, 7L, 7L, 1L, 7L, 4L, 1L, 4L, 7L, 1L, 4L, 6L, 1L, 4L,
7L, 4L, 4L, 4L, 4L, 6L, 7L, 1L, 4L, 1L, 4L, 6L, 7L, 1L, 1L,
4L, 4L, 4L, 4L, 1L, 4L, 4L, 7L, 7L, 1L, 6L, 1L, 4L, 1L, 6L,
1L, 4L, 4L, 4L, 6L, 4L, 1L, 1L, 6L, 4L, 4L, 4L, 1L, 1L, 4L,
4L, 4L, 7L, 1L, 6L, 7L, 6L, 6L, 4L, 6L, 1L, 4L, 4L, 6L, 6L,
4L, 1L, 4L, 6L, 1L, 4L, 1L, 1L, 1L), .Label = c("a", "c",
"f", "l", "m", "n", "p", "s", "y"), class = "factor"), gill.attachment = structure(c(2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("a", "f"), class = "factor"),
gill.spacing = structure(c(1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L,
2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L,
1L, 1L), .Label = c("c", "w"), class = "factor"), gill.size = structure(c(2L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L,
1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L,
2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L,
2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("b", "n"), class = "factor"),
gill.color = structure(c(5L, 5L, 6L, 6L, 5L, 6L, 3L, 6L,
8L, 3L, 3L, 6L, 11L, 5L, 6L, 5L, 5L, 6L, 6L, 5L, 5L, 6L,
5L, 11L, 3L, 6L, 6L, 11L, 5L, 6L, 3L, 5L, 6L, 8L, 6L, 11L,
5L, 11L, 8L, 5L, 6L, 6L, 3L, 8L, 11L, 6L, 5L, 11L, 6L, 11L,
11L, 5L, 5L, 5L, 5L, 11L, 6L, 11L, 5L, 8L, 5L, 5L, 3L, 3L,
6L, 5L, 6L, 11L, 11L, 8L, 8L, 3L, 11L, 8L, 5L, 8L, 6L, 8L,
11L, 6L, 5L, 11L, 6L, 6L, 11L, 5L, 11L, 6L, 11L, 6L, 6L,
5L, 3L, 3L, 6L, 3L, 8L, 6L, 3L, 3L), .Label = c("b", "e",
"g", "h", "k", "n", "o", "p", "r", "u", "w", "y"), class = "factor"),
stalk.shape = structure(c(1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L,
2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L,
1L, 1L), .Label = c("e", "t"), class = "factor"), stalk.root = structure(c(4L,
3L, 3L, 4L, 4L, 3L, 3L, 3L, 4L, 3L, 3L, 3L, 3L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 3L, 4L, 3L, 3L, 3L, 4L, 3L, 3L, 4L, 2L, 3L,
4L, 3L, 5L, 3L, 2L, 4L, 4L, 2L, 3L, 3L, 5L, 4L, 4L, 3L, 3L,
3L, 3L, 5L, 5L, 5L, 3L, 3L, 4L, 4L, 3L, 4L, 3L, 3L, 5L, 4L,
3L, 3L, 3L, 3L, 4L, 3L, 5L, 3L, 4L, 2L, 3L, 2L, 5L, 3L, 2L,
2L, 5L, 4L, 5L, 4L, 4L, 4L, 4L, 5L, 4L, 3L, 3L, 5L, 4L, 4L,
3L, 3L, 3L, 4L, 3L, 5L, 3L, 3L, 3L), .Label = c("?", "b",
"c", "e", "r"), class = "factor"), stalk.surface.above.ring = structure(c(3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c("f", "k",
"s", "y"), class = "factor"), stalk.surface.below.ring = structure(c(3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 3L, 3L, 3L, 3L,
3L, 3L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 4L, 3L, 3L, 3L, 3L, 3L, 4L, 3L, 3L,
3L, 4L, 3L, 4L, 3L, 3L, 3L, 3L, 4L, 3L, 3L, 3L, 4L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 4L, 3L, 3L, 3L), .Label = c("f", "k",
"s", "y"), class = "factor"), stalk.color.above.ring = structure(c(8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L), .Label = c("b", "c",
"e", "g", "n", "o", "p", "w", "y"), class = "factor"), stalk.color.below.ring = structure(c(8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L), .Label = c("b", "c",
"e", "g", "n", "o", "p", "w", "y"), class = "factor"), veil.type = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "p", class = "factor"),
veil.color = structure(c(3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L), .Label = c("n", "o", "w", "y"), class = "factor"),
ring.number = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L), .Label = c("n", "o", "t"), class = "factor"), ring.type = structure(c(5L,
5L, 5L, 5L, 1L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 1L, 5L,
1L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 1L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 1L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 1L, 5L, 5L, 1L, 5L, 1L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 1L, 5L, 5L, 5L, 5L, 5L), .Label = c("e", "f",
"l", "n", "p"), class = "factor"), spore.print.color = structure(c(3L,
4L, 4L, 3L, 4L, 3L, 3L, 4L, 3L, 3L, 4L, 3L, 4L, 4L, 3L, 4L,
4L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 3L, 4L, 4L, 4L, 3L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 3L, 4L, 4L, 3L, 4L, 3L, 3L, 4L, 3L, 4L,
3L, 4L, 4L, 3L, 3L, 3L, 4L, 4L, 3L, 3L, 4L, 4L, 3L, 3L, 4L,
4L, 4L, 4L, 4L, 3L, 3L, 4L, 3L, 4L, 4L, 4L, 4L, 3L, 3L, 4L,
7L, 4L, 4L, 4L, 4L, 3L, 4L, 4L, 3L, 3L, 3L, 4L, 3L, 4L, 4L,
3L, 3L, 3L, 4L, 4L, 4L, 3L, 4L, 3L), .Label = c("b", "h",
"k", "n", "o", "r", "u", "w", "y"), class = "factor"), population = structure(c(4L,
3L, 3L, 4L, 1L, 3L, 3L, 4L, 5L, 4L, 3L, 4L, 4L, 5L, 1L, 6L,
1L, 4L, 4L, 4L, 4L, 5L, 4L, 3L, 4L, 5L, 3L, 3L, 6L, 5L, 3L,
4L, 3L, 6L, 4L, 5L, 5L, 4L, 5L, 4L, 4L, 6L, 6L, 5L, 3L, 3L,
4L, 3L, 4L, 4L, 4L, 4L, 3L, 5L, 5L, 4L, 1L, 3L, 3L, 6L, 5L,
4L, 4L, 3L, 4L, 1L, 4L, 4L, 3L, 5L, 5L, 4L, 5L, 4L, 4L, 5L,
5L, 6L, 5L, 6L, 4L, 4L, 6L, 4L, 4L, 4L, 4L, 4L, 6L, 5L, 6L,
4L, 4L, 3L, 1L, 4L, 4L, 3L, 4L, 4L), .Label = c("a", "c",
"n", "s", "v", "y"), class = "factor"), habitat = structure(c(6L,
2L, 4L, 6L, 2L, 2L, 4L, 4L, 2L, 4L, 2L, 4L, 2L, 6L, 2L, 6L,
2L, 2L, 6L, 6L, 4L, 2L, 4L, 4L, 4L, 2L, 4L, 4L, 6L, 1L, 4L,
6L, 4L, 5L, 4L, 1L, 6L, 6L, 1L, 4L, 2L, 5L, 6L, 2L, 4L, 2L,
4L, 4L, 5L, 5L, 2L, 2L, 4L, 6L, 6L, 4L, 2L, 2L, 2L, 5L, 6L,
4L, 4L, 4L, 2L, 2L, 2L, 2L, 2L, 6L, 1L, 4L, 1L, 5L, 2L, 1L,
1L, 5L, 6L, 2L, 2L, 2L, 6L, 2L, 2L, 2L, 2L, 2L, 2L, 6L, 6L,
2L, 2L, 4L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("d", "g",
"l", "m", "p", "u", "w"), class = "factor")), .Names = c("class",
"cap.shape", "cap.surface", "cap.color", "bruises", "odor", "gill.attachment",
"gill.spacing", "gill.size", "gill.color", "stalk.shape", "stalk.root",
"stalk.surface.above.ring", "stalk.surface.below.ring", "stalk.color.above.ring",
"stalk.color.below.ring", "veil.type", "veil.color", "ring.number",
"ring.type", "spore.print.color", "population", "habitat"), row.names = c(NA,
100L), class = "data.frame")
.csv文件的數據的前五行加上頭
class,cap-shape,cap-surface,cap-color,bruises,odor,gill-attachment,gill-spacing,gill-size,gill-color,stalk-shape,stalk-root,stalk-surface-above-ring,stalk-surface-below-ring,stalk-color-above-ring,stalk-color-below-ring,veil-type,veil-color,ring-number,ring-type,spore-print-color,population,habitat
p,x,s,n,t,p,f,c,n,k,e,e,s,s,w,w,p,w,o,p,k,s,u
e,x,s,y,t,a,f,c,b,k,e,c,s,s,w,w,p,w,o,p,n,n,g
e,b,s,w,t,l,f,c,b,n,e,c,s,s,w,w,p,w,o,p,n,n,m
p,x,y,w,t,p,f,c,n,n,e,e,s,s,w,w,p,w,o,p,k,s,u
e,x,s,g,f,n,f,w,b,k,t,e,s,s,w,w,p,w,o,e,n,a,g
獲取您的數據集需要一個Kaggle ID才能登錄。您可以使用'dput(head(dataset,100))在這裏發佈示例' – G5W
Ups!我忘了將它包含在帖子中。我剛剛編輯它。謝謝。 – MikelAlejoBR