2016-11-26 94 views
5

C中的此代碼(附在帖子後)使用Newton - Raphson method來查找特定區間中多項式的根。牛頓方法程序(在C中)無限循環運行

此代碼適用於x^3 + x^2 + x + 1等多項式,但對於x^3 - 6*x^2 + 11*x - 6等一些多項式,運行時間會變得無限。這就是說,對於在輸入的時間間隔內具有一個或零個根的多項式,該代碼工作正常,但如果存在多於一個根,則它無限期地運行。

如果有人找到解決方案,請讓我知道。我在代碼中寫了評論來指導讀者,但如果有人發現很難理解,可以在評論中提問,我會解釋它。

#include<stdio.h> 
#include<math.h> 
#include<stdlib.h> 
#include<ctype.h> 

int check(float num)       //just a function to check for the correct input 
{ 
    char c; 
    scanf("%c",&c); 

    if(isalpha((int)c)) 
     printf("you entered an alphabet\n"); 

    else 
     printf("you entered a character, please retry\n"); 

    return 0; 
} 

float func(float *p,int order,double x)      //calculates the value of the function required in the formmula in main 
{ 
    double fc=0.0; 
    int i; 

    for(i=0;i<=order;i++) 
    { 
     fc=fc+(double)(*p)*pow(x,(double)i); 
     p++; 
    } 

    return fc; 
} 

float derv(float *q,int order,double x)    //calculates the derivative of the function required in the formmula in main 
{  
    double dv=0.0,i; 

    for(i=1;i<=order;i++) 
    { 
     dv=dv+(double)(*q)*(pow(x,(double)(i-1)))*(double)i; 
     q++; 
    } 

    return dv; 
} 


int main() 
{ 
    float coeff[1000]; 
    int order,count=0,i,j=0; 
    char ch; 
    float a,b; 
    double val[5]; 

    printf("roots of polynomial using newton and bisection method\n"); 
    printf("enter the order of the equation\n"); 

    while(scanf("%d",&order)!=1) 
    { 
     printf("invalid input.please retry\n"); 
     while(getchar()!='\n'){}   
    }  

    printf("enter the cofficients\n"); 

    for(i=0;i<=order;i++) 
    { 
     printf("for x^%d :",order-i); 
     printf("\n"); 

     while(scanf("%f",&coeff[i])!=1) 
     { 
      check(coeff[i]); 
     } 
    } 

    while(getchar()!='\n'){}         //this clears the buffer accumulated upto pressing enter 

    printf("the polynomial you entered is :\n"); 

    for(i=0;i<=order;i++) 
    { 
     printf(" %fx^%d ",coeff[i],order-i); 
    } 

    printf("\n"); 

    //while(getchar()!='\n'){}; 

    /* fflush(stdout); 
    fflush(stdin);*/ 

    printf("plese enter the interval domain [a,b]\n"); 
    printf("enter a and b:\n"); 
    scanf("%f %f",&a,&b); 

    while(getchar()!='\n'){} 

    printf("the entered interval is [%f,%f]",a,b); 

    fflush(stdout); 
    fflush(stdin); 

    //this array is used to choose a different value of x to apply newton's formula recurcively in an interval to scan it roperly for 3 roots 

    val[0]=(double)b;  
    val[1]=(double)a; 
    val[2]=(double)((a+b)/2); 

    double t,x=val[0],x1=0.0,roots[10]; 

    while(1) 
    { 

     t=x1; 
     x1=(x-(func(&coeff[0],order,x)/derv(&coeff[0],order,x)));   //this is the newton's formula 

     x=x1; 

     if((fabs(t - x1))<=0.0001 && count!=0) 
     { 
      roots[j]=x; 
      j++; 
      x=val[j]; // every time a root is encountered this stores the root in roots array and runs the loop again with different value of x to find other roots 
      t=0.0; 
      x1=0.0; 
      count=(-1); 

      if(j==3) 
       break; 
     } 

     count++; 
    } 

    printf("the roots are = \n"); 

    int p=0; 

    for(j=0;j<3;j++) 
    { 
     if(j==0 && roots[j]>=a && roots[j]<=b) 
     { 
      printf(" %f ",roots[j]); 
      p++; 
     } 

     if(fabs(roots[j]-roots[j-1])>0.5 && j!=0 && roots[j]>=a && roots[j]<=b) 
     { 
      printf(" %f ",roots[j]); 
      p++; 
     } 
    } 

    if(p==0) 
     printf("Sorry,no roots are there in this interval \n"); 

    return 0; 
} 
+3

上[牛頓法(維基百科的文章https://en.wikipedia.org/wiki/Newton %27s_method)概述了它無法收斂的原因。據推測,你遇到了其中一些原因。 –

回答

0

Yehh,我終於在C程序中計算了用戶在用戶輸入的時間間隔內輸入多項式的根,它給出了輸出 - 根進行的根的多重性。使用的算法是首先我們將區間劃分爲度數+ 1的等距區間,然後在每個區間中應用Newton-Raphson方法來計算最大根數。幾項檢查中還包括了情況下,當用戶給input.For一些多項式無效,可能會給不需要輸出

#include<stdio.h> 
#include<math.h> 
#include<stdlib.h> 
#include<ctype.h> 

int check(float num)       //just a function to check for the correct input 
{ 
    char c; 
    scanf("%c",&c); 

    if(isalpha((int)c)) 
     printf("\tYou entered an alphabet. Kindly, retry with valid entry\n"); 
    else 
     printf("\tYou entered a character. Kindly, retry with valid entry\n"); 

    return 0; 
} 

char signum(float x) 
{ 
    if (x>=0) return '+'; 
    else return '-'; 
} 



double func(double *p,int degree,double x)      //calculates the value of the function required in the formmula in main 
{ 
    double fc=0.0; 
    int i; 

    for(i=0;i<=degree;i++) 
    { 
    fc=fc+(*p)*pow(x,degree-i); 
    p++; 
    } 

    return fc; 
} 


int fact(int n) 
{ 
    if (n>0) return n*fact(n-1); 
    else return 1; 
} 



double D(int k,int a,double x)    //calculates the derivative of the function required in the formmula in main 
{ 
    if(x!=0 && a>=k) return fact(a)*pow(x,a-k)/fact(a-k); 
    else return 0; 
} 


double derv(double *q,int degree,double x,int order)    //calculates the derivative of the function required in the formmula in main 
{ 
    double dv=0.0; 
    int i; 
    for(i=0;i<=degree;i++) 
    { 
    dv=dv+(*q)*D(order,degree-i,x); 
    q++; 
    } 
    return dv; 
} 



int main() 
{ 
    double coeff[1000],t,x1=0.0,roots[100]; 
    int degree=-1,count=0,i,j=0,k,l=0,flag=1; 
    char ch; 
    float a,b; 
    coeff[0]=0; 
    printf("\t**This Programme helps you find roots of a polynomial using a manipulated version of Newton-Raphson Method in a real interval [a,b]**\n"); 


    while (degree<0) 
    { 
     printf("\tEnter a NON-NEGATIVE INTEGRAL value for the DEGREE of the polynomial: "); 
     while(scanf("%d",&degree)!=1) 
     { 
      printf("\tInvalid Entry. Kindly, retry with valid entry: "); 
      while(getchar()!='\n'){} 
     } 
} 

int w[degree]; 
printf("\tEnter the coefficients...\n"); 

while(coeff[0]==0 && degree!=0) 
{ 
    printf("\t-->for x^%d (Remember that this coefficient cannot be zero since degree is %d): ", degree,degree); 
    while(scanf("%lf",&coeff[0])!=1) 
    { 
     check(coeff[0]); 
    } 
} 

if (degree==0) 
{ 
    printf("\t-->for x^%d: ",0); 
    while(scanf("%lf",&coeff[0])!=1) 
    { 
     check(coeff[0]); 
    } 
} 

for(i=1;i<=degree;i++) 
{ 
    printf("\t-->for x^%d: ",degree-i); 
    while(scanf("%lf",&coeff[i])!=1) 
    { 
     check(coeff[i]); 
    } 
} 

    while(getchar()!='\n'){}         //this clears the buffer accumulated upto pressing enter 
    printf("\tThe input polynomial is:\n"); 
    printf("\t"); 
    for(i=0;i<=degree;i++) 
    { 
    printf("%c %.2fx^%d ",signum(coeff[i]),fabs(coeff[i]),degree-i); 
    } 

    printf("\n"); 
    //while(getchar()!='\n'){}; 

    /* fflush(stdout); 
    fflush(stdin);*/ 
    printf("\tFor the interval domain [a,b]; enter 'a' followed by 'b': "); 
    scanf("%f %f",&a,&b); 


    while(getchar()!='\n'){} 
    printf("\tSo, you entered [%f,%f].\n",a,b); 
    //while(getchar()!='\n'){} 
    fflush(stdout); 
    fflush(stdin); 


    double d=(b-a)/(degree+1), val[degree+2],x=a; 
    for (k = 0; k<=degree+1; k++) 
    { 
    val[k]= a+d*k; 
    // printf("%lf\t", val[k]); 
    } 

    while(l<(degree+2)) 
    { 

    if(derv(&coeff[0],degree,x,1)<=0.00001) 
    { 
     if(func(&coeff[0],degree,x)<=0.00001) 
     { 
      w[j]=2; 
      roots[j]=x; 
     //printf("Axk before %f\n", x); 
      j++; 
     // printf("jC is %d\n", j); 
      l++; 
      x=val[l]; // every time a root is encountered this stores the root in roots array and runs the loop again with different value of x to find other roots 
     //printf("Axk after %f\n", x); 
      t=0.0; 
      x1=0.0; 
      count=(-1); 
     } 
     else 
     { 
      t=0.0; 
      x1=0.0; 
      count=(-1); 
      l++; 
      //printf("Bxk before%f\n", x); 
      x=val[l]; 
      // printf("Bxk after%f\n", x); 
     } 
    } 
     else 
     { 
      t=x1; 
      x1=(x-(func(&coeff[0],degree,x)/derv(&coeff[0],degree,x,1)));   //this is the newton's formula 
     // printf("jB is %d\n", j); 
      //printf("Cxk before%f\n", x); 
      x=x1; 
      //printf("f %f\td %f\tCxk after%f\tc %i\n",func(&coeff[0],degree,x), derv(&coeff[0],degree,x,1), x,count); 
      if(count>500) 
      { 

      if(j>degree) 
       break; 
       printf("\tPolynomial started to diverge. So, no roots can be found\n"); 
      l++; 
      //printf("Dxk before %f\n", x); 
      x=val[l]; 
      //printf("Dxk after %f\n", x); 
      t=0.0; 
      x1=0.0; 
      count=(-1); 

      }  
      if((fabs(t - x1))<=0.00001 && count!=0) 
      { 
      w[j]=1; 
      if(j>degree) 
       break; 

      roots[j]=x; 

      j++; 
      l++; 
     // printf("jC is %d\n", j); 
      x=val[l]; // every time a root is encountered this stores the root in roots array and runs the loop again with different value of x to find other roots 
     //printf("Exk after%f\n", x); 
      t=0.0; 
      x1=0.0; 
      count=(-1); 
      flag=0; 
      if(derv(&coeff[0],degree,x,1)<=0.00001) w[j]=2; 
      else w[j]=1; 
      } 
      count++; 
     } 
    } 

    if(flag==0) 
    { 
    printf("\tThe roots are = \t"); 
    // int p=0; 
    for(j=0;j<degree;j++) 
    { 

     if(j==0 && roots[0]>=a && roots[0]<=b) 
     { 
      printf(" %d %f\n", w[0], roots[0]); 
     //p++; 
     } 

     if(fabs(roots[j]-roots[j-1])>0.001 && j!=0 && roots[j]>=a && roots[j]<=b) 
     { 
      printf(" %d %f\n", w[j], roots[j]); 
     //p++; 
     } 


    } 
    } 
    else 
    printf("\tNo roots found in the interval you entered.\n"); 

    return 0; 

} 
7

你不能正確計算函數或其衍生物,因爲您將按照相反的順序係數,但你是不是佔了點。

當你打印出來的公式,你爲它做帳戶,通過打印order-i

printf(" %fx^%d ",coeff[i],order-i); 

所以你需要做同樣的事情在func

fc=fc+(double)(*p)*pow(x,(double)(order-i)); 

derv

dv=dv+(double)(*q)*(pow(x,(double)((order-i)-1)))*(double)(order-i); 

它爲x^3 + x^2 + x + 1等多項式工作的原因是因爲在這個例子中所有的係數都是相同的,所以如果你向前或向後讀數組,它就沒有什麼區別。

另外,如Johnathon Leffler在評論中提到的那樣,您可能需要考慮方法無法收斂的其他原因。您可以爲循環設置最大迭代次數,並在超出最大值時突破。

調試類似的東西(當然除了使用調試器)的一個好方法是添加一些額外的printf語句來顯示正在計算的值。您可以通過在Google搜索中輸入公式來檢查輸出,它會給出該函數的交互式圖表。