2011-12-19 102 views
9

我是matlab新手,不知道如何使用libsvm。是否有示例代碼用SVM對某些數據(具有2個特徵)進行分類,然後將結果可視化?內核(RBF,Polynomial和Sigmoid)如何? 我看到LIBSVM包自述文件,但我不能讓一個頭或它的尾巴請你給在MATLAB像使用支持向量機(SVM)2類分類的例子:如何在Matlab中使用libsvm?

Attribute_1 Attribute_2 Class 
170   66   -1 
160   50   -1 
170   63   -1 
173   61   -1 
168   58   -1 
184   88   +1 
189   94   +1 
185   88   +1 

任何幫助將不勝感激。

+0

您是否使用從這裏LIBSVM:http://www.csie.ntu.edu.tw/~ cjlin/LIBSVM /? –

+0

是的,我也看到了那裏的指南,但不能使用它 – Sina

回答

12

在LIBSVM包,在文件MATLAB/README,你可以找到下面的例子:

Examples 
======== 

Train and test on the provided data heart_scale: 

matlab> [heart_scale_label, heart_scale_inst] = libsvmread('../heart_scale'); 
matlab> model = svmtrain(heart_scale_label, heart_scale_inst, '-c 1 -g 0.07'); 
matlab> [predict_label, accuracy, dec_values] = svmpredict(heart_scale_label, heart_scale_inst, model); % test the training data 

For probability estimates, you need '-b 1' for training and testing: 

matlab> [heart_scale_label, heart_scale_inst] = libsvmread('../heart_scale'); 
matlab> model = svmtrain(heart_scale_label, heart_scale_inst, '-c 1 -g 0.07 -b 1'); 
matlab> [heart_scale_label, heart_scale_inst] = libsvmread('../heart_scale'); 
matlab> [predict_label, accuracy, prob_estimates] = svmpredict(heart_scale_label, heart_scale_inst, model, '-b 1'); 

To use precomputed kernel, you must include sample serial number as 
the first column of the training and testing data (assume your kernel 
matrix is K, # of instances is n): 

matlab> K1 = [(1:n)', K]; % include sample serial number as first column 
matlab> model = svmtrain(label_vector, K1, '-t 4'); 
matlab> [predict_label, accuracy, dec_values] = svmpredict(label_vector, K1, model); % test the training data 

We give the following detailed example by splitting heart_scale into 
150 training and 120 testing data. Constructing a linear kernel 
matrix and then using the precomputed kernel gives exactly the same 
testing error as using the LIBSVM built-in linear kernel. 

matlab> [heart_scale_label, heart_scale_inst] = libsvmread('../heart_scale'); 
matlab> 
matlab> % Split Data 
matlab> train_data = heart_scale_inst(1:150,:); 
matlab> train_label = heart_scale_label(1:150,:); 
matlab> test_data = heart_scale_inst(151:270,:); 
matlab> test_label = heart_scale_label(151:270,:); 
matlab> 
matlab> % Linear Kernel 
matlab> model_linear = svmtrain(train_label, train_data, '-t 0'); 
matlab> [predict_label_L, accuracy_L, dec_values_L] = svmpredict(test_label, test_data, model_linear); 
matlab> 
matlab> % Precomputed Kernel 
matlab> model_precomputed = svmtrain(train_label, [(1:150)', train_data*train_data'], '-t 4'); 
matlab> [predict_label_P, accuracy_P, dec_values_P] = svmpredict(test_label, [(1:120)', test_data*train_data'], model_precomputed); 
matlab> 
matlab> accuracy_L % Display the accuracy using linear kernel 
matlab> accuracy_P % Display the accuracy using precomputed kernel 

Note that for testing, you can put anything in the 
testing_label_vector. For more details of precomputed kernels, please 
read the section ``Precomputed Kernels'' in the README of the LIBSVM 
package. 
+0

我知道這個線程是舊的,但關於預計算內核的「樣本序列號」是什麼意思? – basti

+1

他們指的是'(1:n)'。基本上,你可以以不同於你的樣本的順序提供內核。否則,只需使用'(1:n)' – Oli