首先匹配的圖片我是相當新的搭配技巧,以便和我一起承擔:與OpenCV的
我對訓練圖像匹配收集的圖像(單細胞樣品)的申請工作。
我已經使用SIFT檢測器和SURF檢測器與基於FLANN的匹配來匹配一組訓練數據到收集的圖像。但是我得到的結果非常糟糕。我使用相同的代碼在OpenCV的文檔:
void foramsMatching(Mat img_object, Mat img_scene){
int minHessian = 400;
SiftFeatureDetector detector(minHessian);
std::vector<KeyPoint> keypoints_object, keypoints_scene;
detector.detect(img_object, keypoints_object);
detector.detect(img_scene, keypoints_scene);
//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
Mat descriptors_object, descriptors_scene;
extractor.compute(img_object, keypoints_object, descriptors_object);
extractor.compute(img_scene, keypoints_scene, descriptors_scene);
//-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
//BFMatcher matcher;
std::vector<DMatch> matches;
matcher.match(descriptors_object, descriptors_scene, matches);
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for (int i = 0; i < descriptors_object.rows; i++)
{
double dist = matches[i].distance;
if (dist < min_dist) min_dist = dist;
if (dist > max_dist) max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist);
printf("-- Min dist : %f \n", min_dist);
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist)
std::vector<DMatch> good_matches;
for (int i = 0; i < descriptors_object.rows; i++)
{
if (matches[i].distance < 3 * min_dist)
{
good_matches.push_back(matches[i]);
}
}
Mat img_matches;
drawMatches(img_object, keypoints_object, img_scene, keypoints_scene,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
//-- Localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene;
for (int i = 0; i < good_matches.size(); i++)
{
//-- Get the keypoints from the good matches
obj.push_back(keypoints_object[good_matches[i].queryIdx].pt);
scene.push_back(keypoints_scene[good_matches[i].trainIdx].pt);
}
Mat H = findHomography(obj, scene, CV_RANSAC);
//-- Get the corners from the image_1 (the object to be "detected")
std::vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0, 0); obj_corners[1] = cvPoint(img_object.cols, 0);
obj_corners[2] = cvPoint(img_object.cols, img_object.rows); obj_corners[3] = cvPoint(0, img_object.rows);
std::vector<Point2f> scene_corners(4);
perspectiveTransform(obj_corners, scene_corners, H);
//-- Draw lines between the corners (the mapped object in the scene - image_2)
line(img_matches, scene_corners[0] + Point2f(img_object.cols, 0), scene_corners[1] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
line(img_matches, scene_corners[1] + Point2f(img_object.cols, 0), scene_corners[2] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
line(img_matches, scene_corners[2] + Point2f(img_object.cols, 0), scene_corners[3] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
line(img_matches, scene_corners[3] + Point2f(img_object.cols, 0), scene_corners[0] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
//-- Show detected matches
namedWindow("Good Matches & Object detection", CV_WINDOW_NORMAL);
imshow("Good Matches & Object detection", img_matches);
//imwrite("../../Samples/Matching.jpg", img_matches);
}
下面是結果 -
他們是真正的窮人相比,我已經使用這些方法看到了一些其他的結果。應該有兩個匹配到屏幕底部的兩個斑點(單元格)。
任何想法,我做錯了或如何改善這些結果? 我正在考慮編寫我自己的Matcher/Discription Extractor,因爲我的訓練圖像不是我正在查詢的細胞的精確副本。 這是一個好主意嗎?如果是這樣,我應該看的任何教程?
問候,
也許有任何額外的知識可以用來消除噪音?在您提供的圖片中,背景和文字似乎很容易移除。 – runDOSrun 2015-02-05 14:14:31
如果我理解正確,您建議嘗試僅匹配底部的特定區域而不匹配最新的圖片?我會嘗試並報告回來:)順便說一句,你會如何去除它們? – Nimrodshn 2015-02-05 14:17:22
當然,我認爲引入更多關於對象的知識可以消除誤報。要做到這一點,你可以舉例來說與規則相匹配的點和麪積(大小/關係/顏色等) – runDOSrun 2015-02-05 14:19:44