2016-09-22 62 views
0

SVM分類我有一組參數使用GridSearchCV選擇適合svm.SVC分類的最好的:Class_weight在Python中

X=dataset.ix[:, dataset.columns != 'class'] 
Y=dataset['class'] 
X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y, test_size=0.5) 

clf=svm.SVC() 
params= 
     {'kernel':['linear', 'rbf', 'poly', 'sigmoid'], 
     'C':[1, 5, 10], 
     'degree':[2,3], 
     'gamma':[0.025, 1.0, 1.25, 1.5, 1.75, 2.0], 
     'coef0':[2, 5, 9], 
     'class_weight': [{1:10}, 'balanced']} 

searcher = GridSearchCV(clf, params, cv=9, n_jobs=-1, scoring=f1) 
searcher.fit(X_train, Y_train) 

,我得到的錯誤:ValueError: class_weight must be dict, 'auto', or None, got: 'balanced' 爲什麼我有它,如果在svm參數的說明中有'balanced',而不是'auto'

回答