嵌入層從輸入單詞中創建嵌入向量(我自己仍然不理解數學),就像word2vec或預先計算的手套一樣。
在開始您的代碼之前,我們來舉個簡單的例子。
texts = ['This is a text','This is not a text']
首先,我們把這些句子成整數的向量,其中每個字是分配給在所述載體的字典和順序字的數創建的字序列。
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.utils import to_categorical
max_review_length = 6 #maximum length of the sentence
embedding_vecor_length = 3
top_words = 10
#num_words is tne number of unique words in the sequence, if there's more top count words are taken
tokenizer = Tokenizer(top_words)
tokenizer.fit_on_texts(texts)
sequences = tokenizer.texts_to_sequences(texts)
word_index = tokenizer.word_index
input_dim = len(word_index) + 1
print('Found %s unique tokens.' % len(word_index))
#max_review_length is the maximum length of the input text so that we can create vector [... 0,0,1,3,50] where 1,3,50 are individual words
data = pad_sequences(sequences, max_review_length)
print('Shape of data tensor:', data.shape)
print(data)
[Out:]
'This is a text' --> [0 0 1 2 3 4]
'This is not a text' --> [0 1 2 5 3 4]
現在可以輸入到這些埋入層
from keras.models import Sequential
from keras.layers import Embedding
model = Sequential()
model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length,mask_zero=True))
model.compile(optimizer='adam', loss='categorical_crossentropy')
output_array = model.predict(data)
output_array包含尺寸的陣列(2,6,3):在我的情況2個輸入評論或句子,圖6是最大數在每個評論(max_review_length)和3是embedding_vecor_length。 例如
array([[[-0.01494285, -0.007915 , 0.01764857],
[-0.01494285, -0.007915 , 0.01764857],
[-0.03019481, -0.02910612, 0.03518577],
[-0.0046863 , 0.04763055, -0.02629668],
[ 0.02297204, 0.02146662, 0.03114786],
[ 0.01634104, 0.02296363, -0.02348827]],
[[-0.01494285, -0.007915 , 0.01764857],
[-0.03019481, -0.02910612, 0.03518577],
[-0.0046863 , 0.04763055, -0.02629668],
[-0.01736645, -0.03719328, 0.02757809],
[ 0.02297204, 0.02146662, 0.03114786],
[ 0.01634104, 0.02296363, -0.02348827]]], dtype=float32)
你的情況,你有5000個單詞的列表,它可以創造的最大500個字的評論(更會被剪掉),並把每一種500個字成大小的矢量32
你可以通過運行得到了這個詞索引和嵌入矢量之間的映射:
model.layers[0].get_weights()
在下面top_words的情況下爲10,所以我們有10個字的映射,你可以看到該映射0,1,2,3, 4和5等於上面的output_array。
[array([[-0.01494285, -0.007915 , 0.01764857],
[-0.03019481, -0.02910612, 0.03518577],
[-0.0046863 , 0.04763055, -0.02629668],
[ 0.02297204, 0.02146662, 0.03114786],
[ 0.01634104, 0.02296363, -0.02348827],
[-0.01736645, -0.03719328, 0.02757809],
[ 0.0100757 , -0.03956784, 0.03794377],
[-0.02672029, -0.00879055, -0.039394 ],
[-0.00949502, -0.02805768, -0.04179233],
[ 0.0180716 , 0.03622523, 0.02232374]], dtype=float32)]
如https://stats.stackexchange.com/questions/270546/how-does-keras-embedding-layer-work提到的這些向量被髮起隨機和優化由netword優化就像網絡的任何其它參數。
可能重複[什麼是在Keras中嵌入?](https://stackoverflow.com/questions/38189713/what-is-an-embedding-in-keras) – DJK
它與theano解釋但它會更容易通過keras中的示例來了解 – user1670773
層的數學遵循相同的原則。 – DJK