0

我支持客戶支付每月使用的各種服務的業務。我想根據客戶對各種服務的歷史使用情況來使用機器學習,並預測未來的使用情況(增加或減少)。Azure ML未來預測算法

我已經使用兩個類來創建一個模型,它使用歷史上的月份1服務用法和月份0用法來預測增長或下降。但我想開始使用所有的歷史信息不僅m-1。

我該怎麼做?我可以繼續添加(M-2,M-3,M-4)色譜柱嗎?如果是這樣的話,我會有數百個專欄。

我是機器學習的新手,我不確定哪種算法對於我正在進行的分析類型非常有用。

這裏是原始表的一個例子,我有:

Customer Name | MonthName  | Service | Usage 
------------- | ---------------|---------|------ 
Customer1  | January, 2017 |Service2 |$400 
Customer1  | January, 2017 |Service1 |$300 
Customer1  | January, 2017 |Service3 |$0 
Customer1  | December, 2017 |Service2 |$600 
Customer1  | December, 2017 |Service1 |$500 
Customer1  | December, 2017 |Service3 |$700 
Customer1  | November, 2016 |Service1 |$500 
Customer1  | November, 2016 |Service2 |$50 
Customer1  | October, 2016 |Service1 |$800 
Customer2  | January, 2017 |Service2 |$400 
Customer2  | January, 2017 |Service1 |$800 
Customer2  | December, 2017 |Service2 |$600 
Customer2  | December, 2017 |Service1 |$500 
Customer2  | November, 2016 |Service1 |$500 
Customer2  | November, 2016 |Service2 |$50 
Customer2  | October, 2016 |Service1 |$800 

這是我現在使用拿出2級車型見下表:

+----------------+------------------+-----------------+-----------------+-----------------+-----------+-----------+-----------+-----------+-------+--------------------+ 
| Customer Name | MonthName  | Service1 - M-1 | Service2 - M-1 | Service3 - M-1 | Usage M-1 | Service1 | Service2 | Service3 | Usage | Usage Decline Flag | 
+----------------+------------------+-----------------+-----------------+-----------------+-----------+-----------+-----------+-----------+-------+--------------------+ 
| Customer1  | October, 2016 |    0 |    0 |    0 |   0 |  800 |   |   | 800 |     0 | 
| Customer1  | November, 2016 |    800 |     |     |  800 |  500 |  50 |   | 550 |     1 | 
| Customer1  | December, 2017 |    500 |    50 |     |  550 |  500 |  600 |  700 | 1800 |     0 | 
| Customer1  | January, 2017 |    500 |    600 |    700 |  1800 |  300 |  400 |   0 | 700 |     1 | 
| Customer2  | October, 2016 |    0 |    0 |    0 |   0 |  1600 |   |   | 1600 |     0 | 
| Customer2  | November, 2016 |   1600 |     |     |  1600 |  500 |  100 |   | 600 |     1 | 
| Customer2  | December, 2017 |    500 |    100 |     |  600 |  500 |  600 |   | 1100 |     0 | 
| Customer2  | January, 2017 |    500 |    600 |     |  1100 |  800 |  400 |   | 1200 |     0 | 
+----------------+------------------+-----------------+-----------------+-----------------+-----------+-----------+-----------+-----------+-------+--------------------+ 
+0

這是沒有本質的「時間序列」學習(所以你哈每個客戶都有一系列數據,並且希望能夠及時預測「下一個價值」)? – user3658307

回答