2014-05-11 117 views
1

我有2個不同的硬幣翻轉數據框。我想要的是找到兩件事情的函數:Python熊貓創建函數來計算n列的行的平均值

  • 的平均分(滿分爲100%),其中頭= 1和尾= 0
  • 他們打得獲得遊戲的數量是得分

是否有可能使函數動態爲n列?

import pandas as pd 
import numpy as np 

df=pd.DataFrame({'Users': [ 'Bob', 'Jim', 'Ted', 'Jesus', 'James'], 
       'Round 1': ['np.nan','H','np.nan','T','H'], 
       'Round 2': ['np.nan','H','H','H','T'], 
       'Round 3': ['np.nan','T','T','T','T'], 
       }) 

df2=pd.DataFrame({'Users': [ 'Boob', 'Paul', 'Todd', 'Zeus', 'Derrik'], 
       'Round 1': ['H','H','np.nan','T','np.nan'], 
       'Round 3': ['H','T','H','T','np.nan'], 
       'Round 5': ['H','T','H','T','np.nan'], 
       'Round 7': ['H','H','H','H','H'], 
       }) 

df = df.set_index('Users') 
df2 = df2.set_index('Users') 
print (df) 
print (df2) 

這裏是我的嘗試:

def score(data): 
    score_map = {'H':1, 'T':0} 
    data=data.replace(score_map) 
    data['average']= 
    data['rounds played']= 

df=score(df) 

我猜我不得不使用GROUPBY這是否可能

結果應該是這個樣子:

 Round 1 Round 2 Round 3 Average Rounds played 
Users       
Bob np.nan np.nan np.nan NaN  0 
Jim   1  1  0 0.66  3 
Ted np.nan  1  0 0.5  2 
Jesus  0  1  0 0.33  3 
James  1  0  0 0.33  2 

[5 rows x 3 columns] 

回答

1
In [104]: def score_map(x): 
    .....:   if x=='H': return 1 
    .....:   if x=='T': return 0 
    .....:   return np.nan 
    .....: 

In [105]: def score(data): 
    .....:   return_df = data.applymap(score_map) 
    .....:   avg = return_df.mean(axis=1) 
    .....:   nrounds = return_df.count(axis=1) 
    .....:   return_df['Average'] = avg 
    .....:   return_df['Rounds Played']=nrounds 
    .....:   return return_df 
    .....: 

In [106]: score(df) 
Out[106]: 
     Round 1 Round 2 Round 3 Average Rounds Played 
Users              
Bob  NaN  NaN  NaN  NaN    0 
Jim   1  1  0 0.666667    3 
Ted  NaN  1  0 0.500000    2 
Jesus  0  1  0 0.333333    3 
James  1  0  0 0.333333    3 

[5 rows x 5 columns]