2016-12-16 181 views
0

original image 我試圖檢測此圖像中連接邊界的集羣。我需要找到這些邊緣的長度以及各個簇的回轉半徑。 我使用的是opencv 2.4.13。 我使用下面的代碼來檢測使用輪廓的質量簇。檢測邊緣(連接的邊緣)並查找邊緣長度和連接的組件回轉半徑

#include "opencv2/highgui/highgui.hpp" 
#include "opencv2/imgproc/imgproc.hpp" 
#include <iostream> 
#include <stdio.h> 
#include <stdlib.h> 

using namespace cv; 
using namespace std; 

Mat src; Mat src_gray; 
int thresh = 100; 
int max_thresh = 255; 
RNG rng(12345); 

/// Function header 
void thresh_callback(int, void*); 

/** @function main */ 
int main(int argc, char** argv) 
{ 
    /// Load source image and convert it to gray 
    src = imread(argv[1], 1); 

    /// Convert image to gray and blur it 
    cvtColor(src, src_gray, CV_BGR2GRAY); 
    blur(src_gray, src_gray, Size(3,3)); 

    /// Create Window 
    char* source_window = "Source"; 
    namedWindow(source_window, CV_WINDOW_AUTOSIZE); 
    imshow(source_window, src); 

    createTrackbar(" Canny thresh:", "Source", &thresh, max_thresh, thresh_callback); 
    thresh_callback(0, 0); 

    waitKey(0); 
    return(0); 
} 

/** @function thresh_callback */ 
void thresh_callback(int, void*) 
{ 
    Mat canny_output; 
    vector<vector<Point> > contours; 
    vector<Vec4i> hierarchy; 

    /// Detect edges using canny 
    Canny(src_gray, canny_output, thresh, thresh*2, 3); 
    /// Find contours 
    findContours(canny_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0)); 

    /// Get the moments 
    vector<Moments> mu(contours.size()); 
    for(int i = 0; i < contours.size(); i++) 
    { mu[i] = moments(contours[i], false); } 

    /// Get the mass centers: 
    vector<Point2f> mc(contours.size()); 
    for(int i = 0; i < contours.size(); i++) 
    { mc[i] = Point2f(mu[i].m10/mu[i].m00 , mu[i].m01/mu[i].m00); } 

    /// Draw contours 
    Mat drawing = Mat::zeros(canny_output.size(), CV_8UC3); 
    Mat drawing2 = Mat::zeros(canny_output.size(), CV_8UC3); 
    for(int i = 0; i< contours.size(); i++) 
    {if(arcLength(contours[i], true)>900) 
     {Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255)); 
     drawContours(drawing, contours, i, color, 2, 8, hierarchy, 0, Point()); 
     circle(drawing, mc[i], 4, color, -1, 8, 0);} 
    } 
    int length=0; 
    int j=0; 
    for(int i = 0; i< contours.size(); i++) 
    { 
    if(arcLength(contours[i], true)>length) 
    { 
     length=arcLength(contours[i], true); 
     j=i; 
    } 
    } 
    Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255)); 
     drawContours(drawing2, contours, j, color, 2, 8, hierarchy, 0, Point()); 
     circle(drawing2, mc[j], 4, color, -1, 8, 0); 

    /// Show in a window 
    namedWindow("Contours", CV_WINDOW_AUTOSIZE); 
    imshow("Contours", drawing); 
    namedWindow("Contours2", CV_WINDOW_AUTOSIZE); 
    imshow("Contours_max", drawing2); 

    /// Calculate the area with the moments 00 and compare with the result of the OpenCV function 
    printf("\t Info: Area and Contour Length \n"); 
    for(int i = 0; i< contours.size(); i++) 
    { 

     if(arcLength(contours[i], true)>900) 
     {printf(" * Contour[%d] - Area (M_00) = %.2f - Area OpenCV: %.2f - Length: %.2f \n", i, mu[i].m00, contourArea(contours[i]), arcLength(contours[i], true)); 
     Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255)); 
     drawContours(drawing, contours, i, color, 2, 8, hierarchy, 0, Point()); 
     circle(drawing, mc[i], 4, color, -1, 8, 0);} 
    } 
} 

問題是輪廓對於共同的共享邊緣而言變得不同,並且邏輯上它們應該是同一個羣集。以下輪廓圖像我給。 contour extracted above a certain length

我們可以看到,具有相同共享邊的許多輪廓被分別視爲不同的輪廓。我希望他們作爲相同邊界羣的一部分。還建議我如何檢測邊界的長度和回轉半徑。 請幫忙。

回答

0

我對你的問題令人難以置信的困惑(將要求澄清的評論,但我太小白評論)

我根據我所看到和理解唯一的建議是,你可能不希望使用canny過濾器。要清楚,你的原始圖像已經有邊緣...運行一個canny過濾器,這給你「雙邊緣」,我不認爲你想要的,但是,我甚至不知道你想達到什麼。