2016-10-20 172 views
1

以下是我在Tensorflow中用作學習編程的代碼。Tensorflow批量標準化

from __future__ import print_function 
from datetime import datetime 
import time, os 

import tensorflow as tf 

# Import certieye data 
from tensorflow.examples.tutorials.mnist import input_data 
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) 

# Parameters 
learning_rate = 0.001 
training_epoch = 5 
batch_size = 128 
display_step = 10 
model_path = "./output/model.ckpt" 
logs_path = './logs' 

directory = os.path.dirname(model_path) 
if not os.path.exists(directory): 
    os.makedirs(directory) 

directory = os.path.dirname(logs_path) 
if not os.path.exists(directory): 
    os.makedirs(directory) 

# Network Parameters 
n_input = 784 # data input 
n_classes = 10 # classes 
dropout = 0.5 # Dropout, probability to keep units 
l2_regularization_strength = 0.0005 #l2 regularization strength 

# tf Graph input 
x = tf.placeholder(tf.float32, [None, n_input], name='InputData') 
y = tf.placeholder(tf.float32, [None, n_classes], name='LabelData') 
keep_prob = tf.placeholder(tf.float32) #dropout (keep probability) 
mode = tf.placeholder(tf.int32); 

# Create some wrappers for simplicity 
def conv2d(x, kernel_shape, strides=1, mode=0): 
    # Conv2D wrapper, with batch normalization and relu activation 
    weights = tf.get_variable('weights', kernel_shape, initializer=tf.contrib.layers.xavier_initializer()) 

    x = tf.nn.conv2d(x, weights, strides=[1, strides, strides, 1], padding='SAME') 
    pop_mean = tf.get_variable('bn_pop_mean', [x.get_shape()[-1]], initializer=tf.constant_initializer(0), trainable=False) 
    pop_var = tf.get_variable('bn_pop_var', [x.get_shape()[-1]], initializer=tf.constant_initializer(1), trainable=False) 
    scale = tf.get_variable('bn_scale', [x.get_shape()[-1]], initializer=tf.constant_initializer(1)) 
    beta = tf.get_variable('bn_beta', [x.get_shape()[-1]], initializer=tf.constant_initializer(0)) 
    epsilon = 1e-3 
    decay = 0.999 
    if mode == 0: 
     batch_mean, batch_var = tf.nn.moments(x,[0, 1, 2]) 
     train_mean = tf.assign(pop_mean, pop_mean * decay + batch_mean * (1 - decay)) 
     train_var = tf.assign(pop_var, pop_var * decay + batch_var * (1 - decay)) 
     with tf.control_dependencies([train_mean, train_var]): 
      bn = tf.nn.batch_normalization(x, batch_mean, batch_var, beta, scale, epsilon, name='bn') 
    else: 
     bn = tf.nn.batch_normalization(x, pop_mean, pop_var, beta, scale, epsilon, name='bn') 

    return tf.nn.relu(bn, name = 'relu') 


def maxpool2d(x, k=2): 
    # MaxPool2D wrapper 
    return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME', name='maxpool') 

# Create model 
def conv_net(x, dropout, mode): 
    # Reshape input picture 
    x = tf.reshape(x, shape=[-1, 28, 28, 1]) 

    with tf.variable_scope("conv1"): 
     # Convolution Layer 
     conv1 = conv2d(x, [5, 5, 1, 32], mode=mode) 
     # Max Pooling (down-sampling) 
     conv1 = maxpool2d(conv1, k=2) 

    with tf.variable_scope("conv2"): 
     # Convolution Layer 
     conv2 = conv2d(conv1, [5, 5, 32, 64], mode=mode) 
     # Max Pooling (down-sampling) 
     conv2 = maxpool2d(conv2, k=2) 

    with tf.variable_scope("fc1"): 
     # Fully connected layer 
     # Reshape conv2 output to fit fully connected layer input 
     weights = tf.get_variable("weights", [7*7*64, 1024], initializer=tf.contrib.layers.xavier_initializer()) 
     biases = tf.get_variable("biases", [1024], initializer=tf.constant_initializer(0.0)) 
     fc1 = tf.reshape(conv2, [-1, weights.get_shape().as_list()[0]]) 
     fc1 = tf.add(tf.matmul(fc1, weights), biases) 
     fc1 = tf.nn.relu(fc1, name = 'relu') 

     # Apply Dropout 
     fc1 = tf.nn.dropout(fc1, dropout, name='dropout') 

    with tf.variable_scope("output"): 
     # Output, class prediction 
     weights = tf.get_variable("weights", [1024, n_classes], initializer=tf.contrib.layers.xavier_initializer()) 
     biases = tf.get_variable("biases", [n_classes], initializer=tf.constant_initializer(0.0)) 
     out = tf.add(tf.matmul(fc1, weights), biases) 
    return out 

with tf.name_scope('Model'): 
    # Construct model 
    pred = conv_net(x, keep_prob, mode) 

with tf.name_scope('Loss'): 
    # Define loss and optimizer 
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) 

    vars = tf.trainable_variables() 
    l2_regularization = tf.add_n([tf.nn.l2_loss(v) for v in vars if any(x in v.name for x in ['weights', 'biases'])]) 
    for v in vars: 
     if any(x in v.name for x in ['weights', 'biases']): 
      print(v.name + '-included!') 
     else: 
      print(v.name) 

    cost += l2_regularization_strength*l2_regularization 

with tf.name_scope('Optimizer'): 
    # Define optimizer 
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) 

    # Op to calculate every variable gradient 
    grads = tf.gradients(cost, tf.trainable_variables()) 
    grads = list(zip(grads, tf.trainable_variables())) 

    # Op to update all variables according to their gradient 
    apply_grads = optimizer.apply_gradients(grads_and_vars=grads) 

with tf.name_scope('Accuracy'): 
    # Evaluate model 
    correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) 
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) 

# Initializing the variables 
init = tf.initialize_all_variables() 

# Create a summary to monitor cost tensor 
tf.scalar_summary('cost', cost) 
# Create a summary to monitor l2_regularization tensor 
tf.scalar_summary('l2_regularization', l2_regularization) 
# Create a summary to monitor accuracy tensor 
tf.scalar_summary('accuracy', accuracy) 
# Create summaries to visualize weights 
for var in tf.trainable_variables(): 
    tf.histogram_summary(var.name, var) 
for var in tf.all_variables(): 
    if 'bn_pop' in var.name: 
     tf.histogram_summary(var.name, var) 
# Summarize all gradients 
for grad, var in grads: 
    tf.histogram_summary(var.name + '/gradient', grad) 
# Merge all summaries into a single op 
merged_summary_op = tf.merge_all_summaries() 

# 'Saver' op to save and restore all the variables 
saver = tf.train.Saver() 

# Launch the graph 
with tf.Session() as sess: 
    sess.run(init) 
    step = 1 

    # op to write logs to Tensorboard 
    summary_writer = tf.train.SummaryWriter(logs_path, graph=tf.get_default_graph()) 

    # Keep training until reach max epoch 
    while step * batch_size < training_epoch * mnist.train.num_examples: 
     start_time = time.time() 
     # Get barch 
     batch_x, batch_y = mnist.train.next_batch(batch_size) 
     # Run optimization op (backprop) 
     sess.run(apply_grads, feed_dict={x: batch_x, y: batch_y, keep_prob: dropout, mode: 0}) 
     duration = time.time() - start_time 
     if step % display_step == 0: 
      # Calculate batch loss and accuracy 
      loss, acc, summary = sess.run([cost, accuracy, merged_summary_op], feed_dict={x: batch_x, 
                   y: batch_y, 
                   keep_prob: 1., 
                   mode: 1}) 

      # Write logs at every iteration 
      summary_writer.add_summary(summary, step) 

      # Calculate number sample per sec 
      samples_per_sec = batch_size/duration 
      format_str = ('%s: Iter %d, Epoch %d, (%.1f examples/sec; %.3f sec/batch), Minibatch Loss = %.5f , Training Accuracy=%.5f') 
      print (format_str % (datetime.now(), step*batch_size, int(step*batch_size/mnist.train.num_examples) + 1, samples_per_sec, float(duration), loss, acc)) 
     step += 1 
    print("Optimization Finished!") 

    # Calculate accuracy for 256 mnist test images 
    print("Testing Accuracy:", \ 
     sess.run(accuracy, feed_dict={x: mnist.test.images[:5000], 
             y: mnist.test.labels[:5000], 
             keep_prob: 1., 
             mode: 2})) 

    # Save model weights to disk 
    save_path = saver.save(sess, model_path) 
    print("Model saved in file: %s" % save_path) 

當我打開tensorboard和查看柱狀圖和分佈sesstion中,「bn_pop_mean」和「CONV1」和「CONV2」「bn_pop_var」不updateing(它們在初始化值恆定)。

雖然培訓後我達到了97%左右的準確度,但我不知道批處理規範是否有效。

回答

1

在您的conv_net函數中,您沒有爲tf.variable_scope()設置「重用」參數。 「重複使用」的默認設置是「無」。每次調用conv2d函數時,都會重新初始化「bn_pop_mean」和「bn_pop_var」。

0
if mode == 0: 
     batch_mean, batch_var = tf.nn.moments(x,[0, 1, 2]) 
     train_mean = tf.assign(pop_mean, pop_mean * decay + batch_mean * (1 - decay)) 
     train_var = tf.assign(pop_var, pop_var * decay + batch_var * (1 - decay)) 
     with tf.control_dependencies([train_mean, train_var]): 
      bn = tf.nn.batch_normalization(x, batch_mean, batch_var, beta, scale, epsilon, name='bn') 
    else: 
     bn = tf.nn.batch_normalization(x, pop_mean, pop_var, beta, scale, epsilon, name='bn') 

看來,這裏的if預測始終評估爲False。我想你想要做的是通過feed_dict使用mode來控制批量標準化。所以你應該在TensorFlow中使用tf.cond,而不是在Python中使用if