6

我目前正在梳理OpenCv中的兩個示例,它們可以讓您檢測到您的臉部和跟蹤對象。目的是首先檢測臉部並跟蹤它。CamShift + OpenCv中的人臉檢測

我當前的代碼:

import numpy as np 
import cv2 
import cv2.cv as cv 
import video 
import math 

cascade = 0 
counter = 0 

class App(object): 
    def __init__(self, video_src): 
     self.cam = video.create_capture(video_src) 
     ret, self.frame = self.cam.read() 
     cv2.namedWindow('camshift') 

     self.selection = None 
     self.drag_start = None 
     self.tracking_state = 0 
     self.show_backproj = False 


    def show_hist(self): 
     bin_count = self.hist.shape[0] 
     bin_w = 24 
     img = np.zeros((256, bin_count*bin_w, 3), np.uint8) 
     for i in xrange(bin_count): 
      h = int(self.hist[i]) 
      cv2.rectangle(img, (i*bin_w+2, 255), ((i+1)*bin_w-2, 255-h), (int(180.0*i/bin_count), 255, 255), -1) 
     img = cv2.cvtColor(img, cv2.COLOR_HSV2BGR) 
     cv2.imshow('hist', img) 

    ''' 
    @param: img the image for the face detection 
    @param: cascade the cascade of the ViolaJones face detection 
    @return: rects, an array of the cornors of the detected face. [x1 y1 x2 y2] 
    ''' 
    def detect(self,img, cascade): 

     # Detect the faces 
     rects = cascade.detectMultiScale(img, scaleFactor=1.1, minNeighbors=3, minSize=(150, 150), flags = cv.CV_HAAR_SCALE_IMAGE) 

     # Check if any faces are detected 
     if len(rects) == 0: 

      # return empty array 
      return [] 
     else: 
      # Get the correct x and y values 
      rects[:,2:] += rects[:,:2] 

      # loop over the recs and shrink the width with 40% 
      for rec in rects: 
       rec[0] = rec[0] + int(math.floor(((rec[2] - rec[0])*0.4)/2)) 
       rec[2] = rec[2] - int(math.floor(((rec[2] - rec[0])*0.4)/2)) 

      return rects 

    def draw_rects(self,img, rects, color): 
     for x1, y1, x2, y2 in rects: 
      cv2.rectangle(img, (x1, y1), (x2, y2), color, 2) 


    def getFace(self,img): 
     gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 
     gray = cv2.equalizeHist(gray) 

     rects = self.detect(gray, cascade) 
     self.rects = rects 
     img = self.draw_rects(img, rects, (0, 255, 0)) 

     if len(rects) != 0: 
      self.selection = rects[0][1], rects[0][0], rects[0][3], rects[0][2] 

     return rects 


    def run(self): 
     counter= 0 
     rects = None 
     while True: 
      counter +=1; 
      ret, self.frame = self.cam.read() 
      vis = self.frame.copy() 

      if counter % 150 == 0: 
       rects = self.getFace(vis); 

      hsv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV) 

      mask = cv2.inRange(hsv, np.array((0., 60., 32.)), np.array((180., 255., 255.))) 
      if rects is not None: 
       self.draw_rects(vis, rects, (0, 255, 0)) 

      if self.selection: 
       print 'test0' 
       x0, y0, x1, y1 = self.selection 
       self.track_window = (x0, y0, x1-x0, y1-y0) 
       hsv_roi = hsv[x0:x1,y0:y1] 
       mask_roi = mask[x0:x1,y0:y1] 
       hist = cv2.calcHist([hsv_roi], [0], mask_roi, [16], [0, 180]) 
       cv2.normalize(hist, hist, 0, 255, cv2.NORM_MINMAX); 
       self.hist = hist.reshape(-1) 
       self.show_hist() 

       vis_roi = vis[x0:x1,y0:y1] 
       cv2.bitwise_not(vis_roi, vis_roi) 
       vis[mask == 0] = 0 
       self.tracking_state = 1 
       self.selection = None 



      if self.tracking_state == 1: 
       self.selection = None 
       prob = cv2.calcBackProject([hsv], [0], self.hist, [0, 180], 1) 
       prob &= mask 
       term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1) 
       track_box, self.track_window = cv2.CamShift(prob, self.track_window, term_crit) 

       if self.show_backproj: 
        vis[:] = prob[...,np.newaxis] 
       try: cv2.ellipse(vis, track_box, (0, 0, 255), 2) 
       except: print track_box 
      cv2.imshow('camshift', vis) 


      ch = 0xFF & cv2.waitKey(5) 
      if ch == 27: 
       break 
      if ch == ord('b'): 
       self.show_backproj = not self.show_backproj 
     cv2.destroyAllWindows() 


if __name__ == '__main__': 
    import sys, getopt 

    args, video_src = getopt.getopt(sys.argv[1:], '', ['cascade=', 'nested-cascade=']) 
    try: video_src = video_src[0] 
    except: video_src = 0 
    args = dict(args) 
    cascade_fn = args.get('--cascade', "haarcascade_frontalface_alt.xml") 
    cascade = cv2.CascadeClassifier(cascade_fn) 

    App(video_src).run() 

目前我這裏顯示,面對最初(在一個綠色的長方形),什麼此刻正在跟蹤(在紅色橢圓)。我能夠檢測到臉部,但臉部追蹤器一直跟蹤除我臉部以外的其他所有東西(總是在一兩個肩膀上)。我懷疑它與座標有關,但我檢查過它們,它們看起來很好(mask_roi,hsv_roi,vis_roi)。舉例: enter image description here

有人可以指出我的錯誤嗎?

+0

嗨@Ojtwist,我在這裏看到這個,想知道如果也許你可以在我的問題上採取一個雄性:http://stackoverflow.com/questions/16493008/using-opencv-detectmultiscale-to-find-my-face – user592419 2013-05-11 18:47:45

回答

2

我無法運行你的代碼(沒有名爲video的模塊)。我使用OpenCV的2.4.4和我的解決問題的方法如下:

  1. 確保你的臉是正常點亮(沒有陰影,鮮豔自然的膚色,深色背景有很大幫助)
  2. 戲與hsv的值在mask = cv2.inRange(hsv, np.array((0., 60., 32.)),np.array((180., 255., 255.)))。我使用這些:np.array((0., 51., 89.))np.array((17., 140., 255.))

提示:

你可以做一個窗口,只爲你的面具,所以你可以看到它有多好作品

後:cv2.namedWindow('camshift')cv2.namedWindow('mask')

和之後:mask = cv2.inRange...cv2.imshow('mask', mask)mask_roi

+0

視頻模塊是opencv中給出的標準python模塊。您可以通過在opencv文件夾(video.py)中搜索來找到它。我會在稍後看看你的建議。 – Ojtwist 2013-03-27 11:23:05

+0

我玩過這些價值觀,它效果更好,但它現在也跟蹤我的脖子:p。我將看看如何限制邊界框。 – Ojtwist 2013-03-28 08:10:30