2016-08-12 171 views

回答

2

以下工作。

  • 選擇具有良好的統計特性
  • 種子很好
  • 生成了一個包含範圍的整數,包括整數類型的最小值和最大值的PRNG。
  • 由於整數在整個範圍內均勻分佈,所以每個比特表示必須同等可能。由於所有比特表示都存在,每個比特同樣喜歡打開或關閉。

下面的代碼實現這一點:

#include <cstdint> 
#include <iostream> 
#include <random> 
#include <algorithm> 
#include <functional> 
#include <bitset> 

//Generate the goodness 
template<class T> 
T uniform_bits(std::mt19937& g){ 
    std::uniform_int_distribution<T> dist(std::numeric_limits<T>::lowest(),std::numeric_limits<T>::max()); 
    return dist(g); 
} 

int main(){ 
    //std::default_random_engine can be anything, including an engine with short 
    //periods and bad statistical properties. Rather than cross my finers and pray 
    //that it'll somehow be okay, I'm going to rely on an engine whose strengths 
    //and weaknesses I know. 
    std::mt19937 engine; 

    //You'll see a lot of people write `engine.seed(std::random_device{}())`. This 
    //is bad. The Mersenne Twister has an internal state of 624 bytes. A single 
    //call to std::random_device() will give us 4 bytes: woefully inadequate. The 
    //following method should be slightly better, though, sadly, 
    //std::random_device may still return deterministic, poorly distributed 
    //numbers. 
    std::uint_fast32_t seed_data[std::mt19937::state_size]; 
    std::random_device r; 
    std::generate_n(seed_data, std::mt19937::state_size, std::ref(r)); 
    std::seed_seq q(std::begin(seed_data), std::end(seed_data)); 
    engine.seed(q); 

    //Use bitset to print the numbers for analysis 
    for(int i=0;i<50000;i++) 
    std::cout<<std::bitset<64>(uniform_bits<uint64_t>(engine))<<std::endl; 

    return 0; 
} 

我們可以通過編譯(g++ -O3 test.cpp)測試輸出,並做了一些統計數據:

./a.out | sed -E 's/(.)/ \1/g' | sed 's/^ //' | numsum -c | tr " " "\n" | awk '{print $1/25000}' | tr "\n" " " 

結果是:

1.00368 1.00788 1.00416 1.0036 0.99224 1.00632 1.00532 0.99336 0.99768 0.99952 0.99424 1.00276 1.00272 0.99636 0.99728 0.99524 0.99464 0.99424 0.99644 1.0076 0.99548 0.99732 1.00348 1.00268 1.00656 0.99748 0.99404 0.99888 0.99832 0.99204 0.99832 1.00196 1.005 0.99796 1.00612 1.00112 0.997 0.99988 0.99396 0.9946 1.00032 0.99824 1.00196 1.00612 0.99372 1.00064 0.99848 1.00008 0.99848 0.9914 1.00008 1.00416 0.99716 1.00868 0.993 1.00468 0.99908 1.003 1.00384 1.00296 1.0034 0.99264 1 1.00036 

因爲所有的值都是「c失去「,我們認爲我們的使命已經完成。

0

這裏是一個不錯的功能來實現這一點:

template<typename T, std::size_t N = sizeof(T) * CHAR_BIT> //CHAR_BIT is 8 on most 
                  //architectures 
auto randomBitset() { 
    std::uniform_int_distribution<int> dis(0, 1); 
    std::mt19937 mt{ std::random_device{}() }; 

    std::string values; 
    for (std::size_t i = 0; i < N; ++i) 
     values += dis(mt) + '0'; 

    return std::bitset<N>{ values }; 
}