我最近開始在Android Studio上開發應用程序,並且剛完成編寫代碼。我得到的準確性比令人滿意的多,但設備所用的時間是lot。 {}我跟着一些關於如何監視android studio性能的教程,我看到我的代碼的一小部分正在拍攝6秒,其中我的應用程序需要一半時間來顯示整個結果。我在OpenCV/JavaCV上看到很多帖子Java OpenCV - extracting good matches from knnMatch,OpenCV filtering ORB matches,但沒有遇到任何人提出這個問題。 OpenCV鏈接http://docs.opencv.org/2.4/doc/tutorials/features2d/feature_homography/feature_homography.html確實提供了一個很好的教程,但與C++相比,OpenCV中的RANSAC函數爲關鍵點提供了不同的參數。OpenCV for Android中的性能問題Keypoint匹配和使用ORB和RANSAC的閾值
這裏是我的代碼
public Mat ORB_detection (Mat Scene_image, Mat Object_image){
/*This function is used to find the reference card in the captured image with the help of
* the reference card saved in the application
* Inputs - Captured image (Scene_image), Reference Image (Object_image)*/
FeatureDetector orb = FeatureDetector.create(FeatureDetector.DYNAMIC_ORB);
/*1.a Keypoint Detection for Scene Image*/
//convert input to grayscale
channels = new ArrayList<Mat>(3);
Core.split(Scene_image, channels);
Scene_image = channels.get(0);
//Sharpen the image
Scene_image = unsharpMask(Scene_image);
MatOfKeyPoint keypoint_scene = new MatOfKeyPoint();
//Convert image to eight bit, unsigned char
Scene_image.convertTo(Scene_image, CvType.CV_8UC1);
orb.detect(Scene_image, keypoint_scene);
channels.clear();
/*1.b Keypoint Detection for Object image*/
//convert input to grayscale
Core.split(Object_image,channels);
Object_image = channels.get(0);
channels.clear();
MatOfKeyPoint keypoint_object = new MatOfKeyPoint();
Object_image.convertTo(Object_image, CvType.CV_8UC1);
orb.detect(Object_image, keypoint_object);
//2. Calculate the descriptors/feature vectors
//Initialize orb descriptor extractor
DescriptorExtractor orb_descriptor = DescriptorExtractor.create(DescriptorExtractor.ORB);
Mat Obj_descriptor = new Mat();
Mat Scene_descriptor = new Mat();
orb_descriptor.compute(Object_image, keypoint_object, Obj_descriptor);
orb_descriptor.compute(Scene_image, keypoint_scene, Scene_descriptor);
//3. Matching the descriptors using Brute-Force
DescriptorMatcher brt_frc = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMING);
MatOfDMatch matches = new MatOfDMatch();
brt_frc.match(Obj_descriptor, Scene_descriptor, matches);
//4. Calculating the max and min distance between Keypoints
float max_dist = 0,min_dist = 100,dist =0;
DMatch[] for_calculating;
for_calculating = matches.toArray();
for(int i = 0; i < Obj_descriptor.rows(); i++)
{ dist = for_calculating[i].distance;
if(dist < min_dist) min_dist = dist;
if(dist > max_dist) max_dist = dist;
}
System.out.print("\nInterval min_dist: " + min_dist + ", max_dist:" + max_dist);
//-- Use only "good" matches (i.e. whose distance is less than 2.5*min_dist)
LinkedList<DMatch> good_matches = new LinkedList<DMatch>();
double ratio_dist=2.5;
ratio_dist = ratio_dist*min_dist;
int i, iter = matches.toArray().length;
matches.release();
for(i = 0;i < iter; i++){
if (for_calculating[i].distance <=ratio_dist)
good_matches.addLast(for_calculating[i]);
}
System.out.print("\n done Good Matches");
/*Necessary type conversion for drawing matches
MatOfDMatch goodMatches = new MatOfDMatch();
goodMatches.fromList(good_matches);
Mat matches_scn_obj = new Mat();
Features2d.drawKeypoints(Object_image, keypoint_object, new Mat(Object_image.rows(), keypoint_object.cols(), keypoint_object.type()), new Scalar(0.0D, 0.0D, 255.0D), 4);
Features2d.drawKeypoints(Scene_image, keypoint_scene, new Mat(Scene_image.rows(), Scene_image.cols(), Scene_image.type()), new Scalar(0.0D, 0.0D, 255.0D), 4);
Features2d.drawMatches(Object_image, keypoint_object, Scene_image, keypoint_scene, goodMatches, matches_scn_obj);
SaveImage(matches_scn_obj,"drawing_good_matches.jpg");
*/
if(good_matches.size() <= 6){
ph_value = "7";
System.out.println("Wrong Detection");
return Scene_image;
}
else{
//5. RANSAC thresholding for finding the optimum homography
Mat outputImg = new Mat();
LinkedList<Point> objList = new LinkedList<Point>();
LinkedList<Point> sceneList = new LinkedList<Point>();
List<org.opencv.core.KeyPoint> keypoints_objectList = keypoint_object.toList();
List<org.opencv.core.KeyPoint> keypoints_sceneList = keypoint_scene.toList();
//getting the object and scene points from good matches
for(i = 0; i<good_matches.size(); i++){
objList.addLast(keypoints_objectList.get(good_matches.get(i).queryIdx).pt);
sceneList.addLast(keypoints_sceneList.get(good_matches.get(i).trainIdx).pt);
}
good_matches.clear();
MatOfPoint2f obj = new MatOfPoint2f();
obj.fromList(objList);
objList.clear();
MatOfPoint2f scene = new MatOfPoint2f();
scene.fromList(sceneList);
sceneList.clear();
float RANSAC_dist=(float)2.0;
Mat hg = Calib3d.findHomography(obj, scene, Calib3d.RANSAC, RANSAC_dist);
for(i = 0;i<hg.cols();i++) {
String tmp = "";
for (int j = 0; j < hg.rows(); j++) {
Point val = new Point(hg.get(j, i));
tmp= tmp + val.x + " ";
}
}
Mat scene_image_transformed_color = new Mat();
Imgproc.warpPerspective(original_image, scene_image_transformed_color, hg, Object_image.size(), Imgproc.WARP_INVERSE_MAP);
processing(scene_image_transformed_color, template_match);
return outputImg;
}
} }
,這部分是什麼正在6秒上運行時實現 -
LinkedList<DMatch> good_matches = new LinkedList<DMatch>();
double ratio_dist=2.5;
ratio_dist = ratio_dist*min_dist;
int i, iter = matches.toArray().length;
matches.release();
for(i = 0;i < iter; i++){
if (for_calculating[i].distance <=ratio_dist)
good_matches.addLast(for_calculating[i]);
}
System.out.print("\n done Good Matches");}
我想可能是我可以寫在這部分代碼C++使用NDK,但我只是想確保語言是問題而不是代碼本身。 請不要嚴格,第一個問題!任何批評都非常感謝!
蠻力匹配是'O(n^2)',所以要麼使用更快的匹配方法(FLANN),要麼可以減少關鍵點的數量。但是特徵提取本身可能相當昂貴。我懷疑切換到C++會給opencv函數帶來好處(可能它們會啓動一些C二進制文件?),但我從來沒有嘗試過...... – Micka
您在圖像上提取了多少個關鍵點? – Micka
我會說它更可能是檢測部分的圖像分辨率。 OpenCV中ORB的默認功能數量爲500,我在2012年1ms內對Nexus 4進行了蠻力匹配,以進行實時跟蹤。 – Photon