昨天我使用期望最大化算法實現了GMM(高斯混合模型)。如你所記得的,它將一些不知名的分佈建模爲高斯分佈的混合體,我們需要了解它的均值和方差,以及每個高斯的權重。GMM-對數似然不單調
這是代碼背後的數學(它不是那麼複雜) http://mccormickml.com/2014/08/04/gaussian-mixture-models-tutorial-and-matlab-code/
這是我的代碼:
import numpy as np
from scipy.stats import multivariate_normal
import matplotlib.pyplot as plt
#reference for this code is http://mccormickml.com/2014/08/04/gaussian-mixture-models-tutorial-and-matlab-code/
def expectation(data, means, covs, priors): #E-step. returns the updated probabilities
m = data.shape[0] #gets the data, means covariances and priors of all clusters
numOfClusters = priors.shape[0]
probabilities = np.zeros((m, numOfClusters))
for i in range(0, m):
for j in range(0, numOfClusters):
sum = 0
for l in range(0, numOfClusters):
sum += normalPDF(data[i, :], means[l], covs[l]) * priors[l, 0]
probabilities[i, j] = normalPDF(data[i, :], means[j], covs[j]) * priors[j, 0]/sum
return probabilities
def maximization(data, probabilities): #M-step. this updates the means, covariances, and priors of all clusters
m, n = data.shape
numOfClusters = probabilities.shape[1]
means = np.zeros((numOfClusters, n))
covs = np.zeros((numOfClusters, n, n))
priors = np.zeros((numOfClusters, 1))
for i in range(0, numOfClusters):
priors[i, 0] = np.sum(probabilities[:, i])/m #update priors
for j in range(0, m): #update means
means[i] += probabilities[j, i] * data[j, :]
vec = np.reshape(data[j, :] - means[i, :], (n, 1))
covs[i] += probabilities[j, i] * np.dot(vec, vec.T) #update covs
means[i] /= np.sum(probabilities[:, i])
covs[i] /= np.sum(probabilities[:, i])
return [means, covs, priors]
def normalPDF(x, mean, covariance): #this is simply multivariate normal pdf
n = len(x)
mean = np.reshape(mean, (n,))
x = np.reshape(x, (n,))
var = multivariate_normal(mean=mean, cov=covariance,)
return var.pdf(x)
def initClusters(numOfClusters, data): #initialize all the gaussian clusters (means, covariances, priors
m, n = data.shape
means = np.zeros((numOfClusters, n))
covs = np.zeros((numOfClusters, n, n))
priors = np.zeros((numOfClusters, 1))
initialCovariance = np.cov(data.T)
for i in range(0, numOfClusters):
means[i] = np.random.rand(n) #the initial mean for each gaussian is chosen randomly
covs[i] = initialCovariance #the initial covariance of each cluster is the covariance of the data
priors[i, 0] = 1.0/numOfClusters #the initial priors are uniformly distributed.
return [means, covs, priors]
def logLikelihood(data, probabilities): #data is our data. probabilities[i, j] = k means probability example i belongs in cluster j is 0 < k < 1
m = data.shape[0] #num of examples
examplesByCluster = np.zeros((m, 1))
for i in range(0, m):
examplesByCluster[i, 0] = np.argmax(probabilities[i, :])
examplesByCluster = examplesByCluster.astype(int) #examplesByCluster[i] = j means that example i belongs in cluster j
result = 0
for i in range(0, m):
result += np.log(probabilities[i, examplesByCluster[i, 0]]) #example i belongs in cluster examplesByCluster[i, 0]
return result
m = 2000 #num of training examples
n = 8 #num of features for each example
data = np.random.rand(m, n)
numOfClusters = 2 #num of gaussians
numIter = 30 #num of iterations of EM
cost = np.zeros((numIter, 1))
[means, covs, priors] = initClusters(numOfClusters, data)
for i in range(0, numIter):
probabilities = expectation(data, means, covs, priors)
[means, covs, priors] = maximization(data, probabilities)
cost[i, 0] = logLikelihood(data, probabilities)
plt.plot(cost)
plt.show()
的問題是,對數似然是行爲古怪。我預計它會單調增加。但事實並非如此。
例如,具有8個特徵與3個高斯簇2000個的例子中,對數似然看起來像這樣(30次迭代) -
因此,這是很不好。但在其他測試中,我跑了,例如一個測試用的2個功能和2羣15本例中,對數似然是這樣的 -
更好,但還不夠完善。
爲什麼會發生這種情況,我該如何解決?
你想要模擬什麼數據?從代碼看來,您正在對隨機點進行建模,即在數據中沒有找到結構。如果是這樣的話,你的GMM模型可能會隨機波動 – etov
在這種情況下,它是隨機的,但將來它可能是任何類型的數據,從溫度到車輛傳感器讀數,任何事情。我認爲數據是隨機的並不重要。從理論上講,我們保證單調收斂。即使是隨機數據。 –
您是否嘗試將您的結果與已知實現的結果進行比較?一個選項是scikit-learn的[GaussianMixture](http://scikit-learn.org/stable/modules/mixture.html)。 –