2017-08-10 85 views
12

我試圖使用OpenCV從它的背景中分割一個彎曲杆,然後找到彎曲並計算每個彎曲之間的角度。如何分割彎曲杆進行角度計算?

第一部分幸運的是前景和背景之間足夠的對比度是微不足道的。 當分割時,一點腐蝕/膨脹照顧反射/高光。

第二部分是我不知道如何處理它的地方。

我可以很容易地檢索輪廓(頂部和底部非常相似,所以要麼) ,但我似乎無法弄清楚如何將輪廓分割成直線部分和彎曲杆來計算角度。

到目前爲止,我已經嘗試過簡單地繪製輪廓,但是要麼我得到太多或太少的點,並且難以指定正確的 設置以保持筆直部分筆直並且彎曲部分簡化。

這裏是我的輸入圖像(bend.png)

bend.png

而且這裏是我試過到目前爲止:

#!/usr/bin/env python 
import numpy as np 
import cv2 

threshold = 229 
# erosion/dilation kernel 
kernel = np.ones((5,5),np.uint8) 
# contour simplification 
epsilon = 0 

# slider callbacks 
def onThreshold(x): 
    global threshold 
    print "threshold = ",x 
    threshold = x 
def onEpsilon(x): 
    global epsilon 
    epsilon = x * 0.01 
    print "epsilon = ",epsilon 

# make a window to add sliders/preview to 
cv2.namedWindow('processed') 
#make some sliders 
cv2.createTrackbar('threshold','processed',60,255,onThreshold) 
cv2.createTrackbar('epsilon','processed',1,1000,onEpsilon) 
# load image 
img = cv2.imread('bend.png',0) 
# continuously process for quick feedback 
while 1: 
    # exit on ESC key 
    k = cv2.waitKey(1) & 0xFF 
    if k == 27: 
     break 

    # Threshold 
    ret,processed = cv2.threshold(img,threshold,255,0) 
    # Invert 
    processed = (255-processed) 
    # Dilate 
    processed = cv2.dilate(processed,kernel) 
    processed = cv2.erode(processed,kernel) 
    # Canny 
    processed = cv2.Canny(processed,100,200) 

    contours, hierarchy = cv2.findContours(processed,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) 
    if len(contours) > 0: 
     approx = cv2.approxPolyDP(contours[0],epsilon,True) 
     # print len(approx) 
     cv2.drawContours(processed, [approx], -1, (255,255,255), 3) 
     demo = img.copy() 
     cv2.drawContours(demo, [approx], -1, (192,0,0), 3) 
    # show result 
    cv2.imshow('processed ',processed) 
    cv2.imshow('demo ',demo) 


# exit 
cv2.destroyAllWindows() 

這裏就是我這麼遠,但我不相信這是最好的辦法:

contour finding

simplified contour

我試圖在視覺上弄清楚了這一點,我所針對的是沿着這些路線的東西:

straight lines and bends segmented

因爲最終的目標是計算彎曲部分的東西之間的夾角像這種感覺簡單:

line fitting

我的假設是對INT之間的擬合直線和計算的角度ersecting線可以工作:

angles from line fitting intersections

我沒有使用HoughLines OpenCV Python tutorial快速測試,但無論是參數的傳遞,我沒有得到很大的成績:

#!/usr/bin/env python 
import numpy as np 
import cv2 

threshold = 229 
minLineLength = 30 
maxLineGap = 10 
houghThresh = 15 

# erosion/dilation kernel 
kernel = np.ones((5,5),np.uint8) 

# slider callbacks 
def onMinLineLength(x): 
    global minLineLength 
    minLineLength = x 
    print "minLineLength = ",x 

def onMaxLineGap(x): 
    global maxLineGap 
    maxLineGap = x 
    print "maxLineGap = ",x 

def onHoughThresh(x): 
    global houghThresh 
    houghThresh = x 
    print "houghThresh = ",x 

# make a window to add sliders/preview to 
cv2.namedWindow('processed') 
#make some sliders 
cv2.createTrackbar('minLineLength','processed',1,50,onMinLineLength) 
cv2.createTrackbar('maxLineGap','processed',5,30,onMaxLineGap) 
cv2.createTrackbar('houghThresh','processed',15,50,onHoughThresh) 
# load image 
img = cv2.imread('bend.png',0) 
# continuously process for quick feedback 
while 1: 
    # exit on ESC key 
    k = cv2.waitKey(1) & 0xFF 
    if k == 27: 
     break 

    # Threshold 
    ret,processed = cv2.threshold(img,threshold,255,0) 
    # Invert 
    processed = (255-processed) 
    # Dilate 
    processed = cv2.dilate(processed,kernel) 
    processed = cv2.erode(processed,kernel) 
    # Canny 
    processed = cv2.Canny(processed,100,200) 

    lineBottom = np.zeros(img.shape,np.uint8) 

    contours, hierarchy = cv2.findContours(processed,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) 
    if len(contours) > 0: 
     cv2.drawContours(lineBottom, contours, 0, (255,255,255), 1) 

    # HoughLinesP 
    houghResult = img.copy() 
    lines = cv2.HoughLinesP(lineBottom,1,np.pi/180,houghThresh,minLineLength,maxLineGap) 
    try: 
     for x in range(0, len(lines)): 
      for x1,y1,x2,y2 in lines[x]: 
       cv2.line(houghResult,(x1,y1),(x2,y2),(0,255,0),2) 
    except Exception as e: 
     print e 

    # show result 
    cv2.imshow('lineBottom',lineBottom) 
    cv2.imshow('houghResult ',houghResult) 


# exit 
cv2.destroyAllWindows() 

HoughLinesP result

是這是一個可行的方法?如果是這樣,在OpenCV Python中進行線擬合的正確方法是什麼?

否則,這是解決此問題的最佳方法?

更新繼三木勸我試過的OpenCV 3的LSD和比HoughLinesP得到更好的結果,但它看起來還是有一些調整需要,雖然它不看以外cv2.createLineSegmentDetector不會有太多的選擇,玩:

LSD Result

+2

我做了與approxPolyDP非常類似的事情,最終合併了幾乎共線的後續段/短段。 – Miki

+1

另一種方法是使用LSD(線段檢測器)...我從來沒有使用它,但值得一試 – Miki

+0

@Miki聽起來很有趣。我從approxPolyDP開始,但接下來不知道該怎麼做。所以,你基本上通過線路循環,如果線對之間的角度差異低於閾值你合併成一行,對吧? –

回答

1

它可以方便地使用曲率找到線段。這裏用最小曲率點分割輪廓的example,在你的情況下最好使用最大麴率點。 B您可以將曲線分成幾部分,然後使用RANSAC方法將每個部分與線段近似。

+0

這看起來很有趣,謝謝你(+1)!我將移植我的小演示C++,看看它如何。 –