我有兩個scipy.stats.norm(mean,std).pdf(0)正態分佈曲線,我試圖找出兩條曲線的差異(重疊)。scipy兩個正態分佈的重疊概率
我如何用Python中的scipy進行計算?由於
我有兩個scipy.stats.norm(mean,std).pdf(0)正態分佈曲線,我試圖找出兩條曲線的差異(重疊)。scipy兩個正態分佈的重疊概率
我如何用Python中的scipy進行計算?由於
您可以使用@duhalme建議得到相交,然後利用這一點來定義的積分限範圍內的答案,
其中,此代碼的樣子,
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
norm.cdf(1.96)
def solve(m1,m2,std1,std2):
a = 1/(2*std1**2) - 1/(2*std2**2)
b = m2/(std2**2) - m1/(std1**2)
c = m1**2 /(2*std1**2) - m2**2/(2*std2**2) - np.log(std2/std1)
return np.roots([a,b,c])
m1 = 2.5
std1 = 1.0
m2 = 5.0
std2 = 1.0
#Get point of intersect
result = solve(m1,m2,std1,std2)
#Get point on surface
x = np.linspace(-5,9,10000)
plot1=plt.plot(x,norm.pdf(x,m1,std1))
plot2=plt.plot(x,norm.pdf(x,m2,std2))
plot3=plt.plot(result,norm.pdf(result,m1,std1),'o')
#Plots integrated area
r = result[0]
olap = plt.fill_between(x[x>r], 0, norm.pdf(x[x>r],m1,std1),alpha=0.3)
olap = plt.fill_between(x[x<r], 0, norm.pdf(x[x<r],m2,std2),alpha=0.3)
# integrate
area = norm.cdf(r,m2,std2) + (1.-norm.cdf(r,m1,std1))
print("Area under curves ", area)
plt.show()
儘管可以定義高斯的符號版本並且可以定義scipy.quad
(或其他),但cdf用於獲得高斯的積分。或者,您可以使用像這樣的蒙特卡羅方法link(即生成隨機數並拒絕任何您想要的範圍之外的任何數)。
埃德的回答非常好。但是,我注意到,當有兩個或無限(完全重疊)的聯繫點時,它不起作用。以下是處理這兩種情況的代碼版本。
如果您還想繼續查看分佈圖,可以使用Ed的代碼。
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
def solve(m1,m2,std1,std2):
a = 1./(2.*std1**2) - 1./(2.*std2**2)
b = m2/(std2**2) - m1/(std1**2)
c = m1**2 /(2*std1**2) - m2**2/(2*std2**2) - np.log(std2/std1)
return np.roots([a,b,c])
m1 = 2.5
std1 = 1.0
m2 = 5.0
std2 = 1.0
result = solve(m1,m2,std1,std2)
# 'lower' and 'upper' represent the lower and upper bounds of the space within which we are computing the overlap
if(len(result)==0): # Completely non-overlapping
overlap = 0.0
elif(len(result)==1): # One point of contact
r = result[0]
if(m1>m2):
tm,ts=m2,std2
m2,std2=m1,std1
m1,std1=tm,ts
if(r<lower): # point of contact is less than the lower boundary. order: r-l-u
overlap = (norm.cdf(upper,m1,std1)-norm.cdf(lower,m1,std1))
elif(r<upper): # point of contact is more than the upper boundary. order: l-u-r
overlap = (norm.cdf(r,m2,std2)-norm.cdf(lower,m2,std2))+(norm.cdf(upper,m1,std1)-norm.cdf(r,m1,std1))
else: # point of contact is within the upper and lower boundaries. order: l-r-u
overlap = (norm.cdf(upper,m2,std2)-norm.cdf(lower,m2,std2))
elif(len(result)==2): # Two points of contact
r1 = result[0]
r2 = result[1]
if(r1>r2):
temp=r2
r2=r1
r1=temp
if(std1>std2):
tm,ts=m2,std2
m2,std2=m1,std1
m1,std1=tm,ts
if(r1<lower):
if(r2<lower): # order: r1-r2-l-u
overlap = (norm.cdf(upper,m1,std1)-norm.cdf(lower,m1,std1))
elif(r2<upper): # order: r1-l-r2-u
overlap = (norm.cdf(r2,m2,std2)-norm.cdf(lower,m2,std2))+(norm.cdf(upper,m1,std1)-norm.cdf(r2,m1,std1))
else: # order: r1-l-u-r2
overlap = (norm.cdf(upper,m2,std2)-norm.cdf(lower,m2,std2))
elif(r1<upper):
if(r2<upper): # order: l-r1-r2-u
print norm.cdf(r1,m1,std1), "-", norm.cdf(lower,m1,std1), "+", norm.cdf(r2,m2,std2), "-", norm.cdf(r1,m2,std2), "+", norm.cdf(upper,m1,std1), "-", norm.cdf(r2,m1,std1)
overlap = (norm.cdf(r1,m1,std1)-norm.cdf(lower,m1,std1))+(norm.cdf(r2,m2,std2)-norm.cdf(r1,m2,std2))+(norm.cdf(upper,m1,std1)-norm.cdf(r2,m1,std1))
else: # order: l-r1-u-r2
overlap = (norm.cdf(r1,m1,std1)-norm.cdf(lower,m1,std1))+(norm.cdf(upper,m2,std2)-norm.cdf(r1,m2,std2))
else: # l-u-r1-r2
overlap = (norm.cdf(upper,m1,std1)-norm.cdf(lower,m1,std1))
你見過這樣的:http://stackoverflow.com/questions/22579434/python-finding-the-intersection-point-of-two-gaussian-curves – duhaime
是的,但那只是爲了找到交點對?我試圖找到像我看到的整個區域重疊係數(OVL) – desmond
這個問題是類似的,但不限於高斯:https://stackoverflow.com/questions/20381672/calculate-overlap-area-of-two-功能 – Gabriel