2017-04-08 156 views
0

我想學習貝葉斯網絡,我有一個問題,我想要一些澄清。貝葉斯網絡澄清

鑑於表

CPT

什麼會在p(侵略=高|憤怒=晴,敵意=是)是什麼?我的答案是0.5。

我的思維過程是憤怒和敵意是依賴的,所以根據給出的信息,部分憤怒和是敵意的概率是0.5。

侵犯是獨立的兩個,所以它只會是P(侵略)* 0.5 = 0.5。

這是否是一個正確的假設?

回答

0

簡短的回答:我對p(Aggression=high|Anger=Partly,Hostility=Yes)價值100%.

如果侵略是敵意和憤怒了獨立的,它不會不管你有什麼證據。 因此,p(Aggression)是3個值p(Agg =低),p(Agg =高),p(Agg = veryhigh)中的最大值。

然而3 * 9表意味着p(Agg)= p(Hos,Ang),它是而不是獨立。

我試圖使用免費軟件「Samiam」爲您的CPT(上表)建模。
我這樣做,我已經輸入了Samiam中Aggression節點的CPT值。 對於前輩:我假設有5%的時間處於憤怒狀態的人,15%的人部分感到憤怒,80%的人沒有生氣;敵對的10%時間,部分敵對的30%或不敵對60%的時間。

查看截圖:侵略節點 prepopulated values

表值: enter image description here

與觀察到的證據 - 侵略的價值=高上升到100%: enter image description here

我也附上samiam文件:

net 
{ 
    propagationenginegenerator1791944048146838126L = "[email protected]"; 
    recoveryenginegenerator6944530267470113528l = "[email protected]"; 
    node_size = (130.0 55.0); 
    huginenginegenerator3061656038650325130L = "[email protected]"; 
} 

node Aggression 
{ 
    states = ("Low" "High" "VeryHigh"); 
    position = (268 -263); 
    diagnosistype = "AUXILIARY"; 
    DSLxSUBMODEL = "Root Submodel"; 
    ismapvariable = "false"; 
    ID = "variable2"; 
    label = "Aggression"; 
    DSLxEXTRA_DEFINITIONxDIAGNOSIS_TYPE = "AUXILIARY"; 
    excludepolicy = "include whole CPT"; 
} 
node Anger 
{ 
    states = ("no" "partly" "yes"); 
    position = (118 -48); 
    diagnosistype = "AUXILIARY"; 
    DSLxSUBMODEL = "Root Submodel"; 
    ismapvariable = "false"; 
    ID = "variable0"; 
    label = "Anger"; 
    DSLxEXTRA_DEFINITIONxDIAGNOSIS_TYPE = "AUXILIARY"; 
    excludepolicy = "include whole CPT"; 
} 
node Hostility 
{ 
    states = ("No" "Partly" "Yes"); 
    position = (351 -46); 
    diagnosistype = "AUXILIARY"; 
    DSLxSUBMODEL = "Root Submodel"; 
    ismapvariable = "false"; 
    ID = "variable1"; 
    label = "Hostility"; 
    DSLxEXTRA_DEFINITIONxDIAGNOSIS_TYPE = "AUXILIARY"; 
    excludepolicy = "include whole CPT"; 
} 
potential (Aggression | Anger Hostility) 
{ 
    data = ((( 1.0 0.0 0.0) 
     ( 0.5 0.5 0.0) 
     ( 0.5 0.0 0.5)) 
     (( 0.5 0.5 0.0) 
     ( 0.5 0.5 0.0) 
     ( 0.0 1.0 0.0)) 
     (( 0.5 0.0 0.5) 
     ( 0.0 0.5 0.5) 
     ( 0.0 0.0 1.0))); 
} 
potential (Anger |) 
{ 
    data = ( 0.8 0.15 0.05 ); 
} 
potential (Hostility |) 
{ 
    data = ( 0.6 0.3 0.1); 
}