我需要編寫一個程序來生成並顯示插值每組數據點(我有一個包含數據點的txt文件)的分段二次貝塞爾曲線。曲線應該具有連續的切線方向,每個數據點處的切線方向是兩個相鄰絃線方向的凸組合。在分段二次貝塞爾曲線上找到控制點
0.1 0,
0 0,
0 5,
0.25 5,
0.25 0,
5 0,
5 5,
10 5,
10 0,
9.5 0
以上是我有的數據點,有誰知道我可以用什麼公式計算控制點?
我需要編寫一個程序來生成並顯示插值每組數據點(我有一個包含數據點的txt文件)的分段二次貝塞爾曲線。曲線應該具有連續的切線方向,每個數據點處的切線方向是兩個相鄰絃線方向的凸組合。在分段二次貝塞爾曲線上找到控制點
0.1 0,
0 0,
0 5,
0.25 5,
0.25 0,
5 0,
5 5,
10 5,
10 0,
9.5 0
以上是我有的數據點,有誰知道我可以用什麼公式計算控制點?
您將需要使用三次Bezier來很好地處理多個斜率變化,例如發生在您的數據集中。對於二次貝塞爾曲線,數據點之間只有一個控制點,因此每條曲線段都在連接線段的一側。難以解釋,所以這裏是你的數據(黑點)和二次控制點(紅色)和曲線(藍色)的快速簡圖。 (假裝曲線是平滑的!)
查找到Cubic Hermite curves一個通用的解決方案。
從這裏:http://blog.mackerron.com/2011/01/01/javascript-cubic-splines/
要產生這樣的插補曲線:
您可以使用此咖啡腳本類(編譯成JavaScript)
class MonotonicCubicSpline
# by George MacKerron, mackerron.com
# adapted from:
# http://sourceforge.net/mailarchive/forum.php?thread_name=
# EC90C5C6-C982-4F49-8D46-A64F270C5247%40gmail.com&forum_name=matplotlib-users
# (easier to read at http://old.nabble.com/%22Piecewise-Cubic-Hermite-Interpolating-
# Polynomial%22-in-python-td25204843.html)
# with help from:
# F N Fritsch & R E Carlson (1980) 'Monotone Piecewise Cubic Interpolation',
# SIAM Journal of Numerical Analysis 17(2), 238 - 246.
# http://en.wikipedia.org/wiki/Monotone_cubic_interpolation
# http://en.wikipedia.org/wiki/Cubic_Hermite_spline
constructor: (x, y) ->
n = x.length
delta = []; m = []; alpha = []; beta = []; dist = []; tau = []
for i in [0...(n - 1)]
delta[i] = (y[i + 1] - y[i])/(x[i + 1] - x[i])
m[i] = (delta[i - 1] + delta[i])/2 if i > 0
m[0] = delta[0]
m[n - 1] = delta[n - 2]
to_fix = []
for i in [0...(n - 1)]
to_fix.push(i) if delta[i] == 0
for i in to_fix
m[i] = m[i + 1] = 0
for i in [0...(n - 1)]
alpha[i] = m[i]/delta[i]
beta[i] = m[i + 1]/delta[i]
dist[i] = Math.pow(alpha[i], 2) + Math.pow(beta[i], 2)
tau[i] = 3/Math.sqrt(dist[i])
to_fix = []
for i in [0...(n - 1)]
to_fix.push(i) if dist[i] > 9
for i in to_fix
m[i] = tau[i] * alpha[i] * delta[i]
m[i + 1] = tau[i] * beta[i] * delta[i]
@x = x[0...n] # copy
@y = y[0...n] # copy
@m = m
interpolate: (x) ->
for i in [(@x.length - 2)..0]
break if @x[i] <= x
h = @x[i + 1] - @x[i]
t = (x - @x[i])/h
t2 = Math.pow(t, 2)
t3 = Math.pow(t, 3)
h00 = 2 * t3 - 3 * t2 + 1
h10 = t3 - 2 * t2 + t
h01 = -2 * t3 + 3 * t2
h11 = t3 - t2
y = h00 * @y[i] +
h10 * h * @m[i] +
h01 * @y[i + 1] +
h11 * h * @m[i + 1]
y
感謝您的回覆,以及不錯的繪畫:))) – 2011-05-29 15:02:36