2013-07-15 70 views
0

我正在學習OpenGL ES 2進行定向研究,還有一些事情我不理解。我不太明白傳遞給glVertexAttribPointer的步幅是多少。此外,我能夠畫出一個純色的四面體,但現在我試圖擴大它,使每張臉都有不同的顏色。它進展不順利。有人可以幫助我在着色器方面做錯了什麼,以及它爲什麼繪製顏色怪異/不能正確旋轉。我使用http://www.learnopengles.com/android-lesson-two-ambient-and-diffuse-lighting/作爲了解繪圖工作原理的基礎。任何幫助理解着色器的工作方式和步幅等等,以及我做錯了什麼將不勝感激。OpenGL ES 2帶面色的四面體

package com.example.lab5task1; 

//middle of screen is 0,0. To left/right is -/+ x, up/down is +/- y 

import java.nio.ByteBuffer; 
import java.nio.ByteOrder; 
import java.nio.FloatBuffer; 
import java.nio.ShortBuffer; 
import java.util.Random; 

import javax.microedition.khronos.egl.EGLConfig; 
import javax.microedition.khronos.opengles.GL10; 

import android.annotation.SuppressLint; 
import android.content.Context; 
import android.graphics.Point; 
import android.opengl.GLES20; 
import android.opengl.GLSurfaceView; 
import android.opengl.Matrix; 
import android.os.SystemClock; 
import android.util.Log; 
import android.view.Display; 
import android.view.WindowManager; 

public class MyGLRenderer implements GLSurfaceView.Renderer 
{ 

private static final String TAG = "MyGLRenderer"; 
private Tetrahedron mTet; 
private float height, width; 
public float xTouch, yTouch; 
Random rand = new Random(); 

private final float[] mMVPMatrix = new float[16]; //model view and projection matrix 
private final float[] mProjMatrix = new float[16]; //projection matrix 
private final float[] mVMatrix = new float[16]; //view matrix 
private final float[] mRotationMatrix = new float[16]; //rotation matrix 
private float[] drawColor = { rand.nextFloat(), rand.nextFloat(), rand.nextFloat(), 1f }; 
private float[] mModelMatrix = new float[16]; 

@SuppressLint("NewApi") 
MyGLRenderer(Context context) 
{ 
    WindowManager wm = (WindowManager) context.getSystemService(Context.WINDOW_SERVICE); 
    Display display = wm.getDefaultDisplay(); 
    Point size = new Point(); 
    display.getSize(size); 

    //used for correct drawing and touch 
    this.height = size.y; 
    this.width = size.x; 
    this.xTouch = this.yTouch = 0; 
} 

@Override 
public void onSurfaceCreated(GL10 unused, EGLConfig config) 
{ 

    GLES20.glClearColor(0.0f, 0.0f, 0.0f, 1.0f); 

    // Use culling to remove back faces. 
    GLES20.glEnable(GLES20.GL_CULL_FACE); 

    // Enable depth testing 
    GLES20.glEnable(GLES20.GL_DEPTH_TEST); 

    //eye positions 
    final float eyeX = 0.0f; 
    final float eyeY = 0.0f; 
    final float eyeZ = -3f; 

    // We are looking toward the distance 
    final float lookX = 0.0f; 
    final float lookY = 0.0f; 
    final float lookZ = -1.0f; 

    // Set our up vector. This is where our head would be pointing were we holding the camera. 
    final float upX = 0.0f; 
    final float upY = 1.0f; 
    final float upZ = 0.0f; 

    // Set the view matrix. This matrix can be said to represent the camera position. 
    Matrix.setLookAtM(mVMatrix, 0, eyeX, eyeY, eyeZ, lookX, lookY, lookZ, upX, upY, upZ); 

} 

@Override 
public void onDrawFrame(GL10 unused) 
{ 

    // Draw background color 
    GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT | GLES20.GL_DEPTH_BUFFER_BIT); 

    Matrix.setLookAtM(mVMatrix, 0, 0, 0, -3, 0f, 0f, 0f, 0f, 1.0f, 0.0f); 

    // Calculate the projection and view transformation 
    Matrix.multiplyMM(mMVPMatrix, 0, mProjMatrix, 0, mVMatrix, 0); 

    long time = SystemClock.uptimeMillis() % 10000L; 
    float angleInDegrees = (360.0f/10000.0f) * ((int) time); 

    mTet = new Tetrahedron(); 

    // Draw the triangle facing straight on. 
    Matrix.setIdentityM(mRotationMatrix, 0); 
    Matrix.rotateM(mRotationMatrix, 0, angleInDegrees, .5f, .5f, 0.0f); 
    Matrix.multiplyMM(mMVPMatrix, 0, mRotationMatrix, 0, mMVPMatrix, 0); 

    mTet.draw(mMVPMatrix); 
} 

@Override 
public void onSurfaceChanged(GL10 unused, int width, int height) 
{ 
    // Adjust the viewport based on geometry changes, 
    // such as screen rotation 
    GLES20.glViewport(0, 0, width, height); 

    final float ratio = (float) width/height; 
    final float left = -ratio; 
    final float right = ratio; 
    final float bottom = -1.0f; 
    final float top = 1.0f; 
    final float near = 1.0f; 
    final float far = 10.0f; 

    Matrix.frustumM(mProjMatrix, 0, left, right, bottom, top, near, far); 

} 

public static int loadShader(int type, String shaderCode) 
{ 

    // create a vertex shader type (GLES20.GL_VERTEX_SHADER) 
    // or a fragment shader type (GLES20.GL_FRAGMENT_SHADER) 
    int shader = GLES20.glCreateShader(type); 

    // add the source code to the shader and compile it 
    GLES20.glShaderSource(shader, shaderCode); 
    GLES20.glCompileShader(shader); 

    return shader; 
} 

public static void checkGlError(String glOperation) 
{ 
    int error; 
    while ((error = GLES20.glGetError()) != GLES20.GL_NO_ERROR) 
    { 
     Log.e(TAG, glOperation + ": glError " + error); 
     throw new RuntimeException(glOperation + ": glError " + error); 
    } 
} 
} 

class Tetrahedron 
{ 

enum STYLE 
{ 
    OLD, NEW 
}; 

private STYLE codeType = STYLE.NEW; 

private final FloatBuffer vertexBuffer; 
private final FloatBuffer mColors; 
private final ShortBuffer drawListBuffer; 
private final int mProgram; 
private int mPositionHandle; 
private int mColorHandle; 
private int mMVPMatrixHandle; 
private int mMVMatrixHandle; 

private final String vertexShaderCode = "uniform mat4 uMVPMatrix;" + " attribute vec4 vPosition;" + "void main() {" + " gl_Position = vPosition * uMVPMatrix;" + "}"; 

private final String fragmentShaderCode = "precision mediump float;" + "uniform vec4 vColor;" + "void main() {" + " gl_FragColor = vColor;" + "}"; 

// number of coordinates per vertex in this array 
// 72d angles at center, 108 angle at vertex 
static final int COORDS_PER_VERTEX = 3; 
static final int COLOR_DATA_SIZE = 4; 

static float tetCoords[] = { 0.0f, 0.622008459f, 0.0f,// 
     -0.5f, -0.311004243f, 0.0f,// 
     0.5f, -0.311004243f, 0.0f,// 
     0.0f, 0.0f, .622008459f }; 

static float colors[] = { 
     //face one 
     1.0f, 0.0f, 0.0f, 1.0f,//    
     1.0f, 0.0f, 0.0f, 1.0f,// 
     1.0f, 0.0f, 0.0f, 1.0f,// 
     //face two 
     0.0f, 1.0f, 0.0f, 1.0f,//    
     0.0f, 1.0f, 0.0f, 1.0f,// 
     0.0f, 1.0f, 0.0f, 1.0f,// 
     //face three 
     0.0f, 0.0f, 1.0f, 1.0f,//    
     0.0f, 0.0f, 1.0f, 1.0f,// 
     0.0f, 0.0f, 1.0f, 1.0f,// 
     //face four 
     1.0f, 1.0f, 0.0f, 1.0f,//    
     1.0f, 1.0f, 0.0f, 1.0f,// 
     1.0f, 1.0f, 0.0f, 1.0f,// 
}; 

String[] attributes = { "a_Position", "a_Color" }; 

private short drawOrder[] = { 0, 1, 2, 3, 0, 1 }; 
private final int vertexStride = COORDS_PER_VERTEX * 4; // 4 bytes per vertex 
private final int colorStride = COLOR_DATA_SIZE * 4; 

float color[] = { .5f, .5f, .5f, 1f }; 

public Tetrahedron() 
{ 
    // initialize vertex byte buffer for shape coordinates 

    //this.color = color; 
    ByteBuffer bb = ByteBuffer.allocateDirect(
    // (# of coordinate values * 4 bytes per float) 
      tetCoords.length * 4); 
    bb.order(ByteOrder.nativeOrder()); 
    vertexBuffer = bb.asFloatBuffer(); 
    vertexBuffer.put(tetCoords); 
    vertexBuffer.position(0); 

    // initialize byte buffer for the draw list 
    // (# of coordinate values * 2 bytes per short) 
    ByteBuffer dlb = ByteBuffer.allocateDirect(drawOrder.length * 2); 
    dlb.order(ByteOrder.nativeOrder()); 
    drawListBuffer = dlb.asShortBuffer(); 
    drawListBuffer.put(drawOrder); 
    drawListBuffer.position(0); 

    mColors = ByteBuffer.allocateDirect(colors.length * 4).order(ByteOrder.nativeOrder()) 
      .asFloatBuffer(); 
    mColors.put(colors); 
    mColors.position(0); 

    if (codeType == STYLE.NEW) 
    { 

     final String vertexShader = getVertexShader(); 
     final String fragmentShader = getFragmentShader(); 

     int vertexShaderHandle = MyGLRenderer.loadShader(GLES20.GL_VERTEX_SHADER, vertexShader); 
     int fragmentShaderHandle = MyGLRenderer.loadShader(GLES20.GL_FRAGMENT_SHADER, 
       fragmentShader); 
     mProgram = GLES20.glCreateProgram(); 
     GLES20.glAttachShader(mProgram, vertexShaderHandle); 
     GLES20.glAttachShader(mProgram, fragmentShaderHandle); 
     for (int i = 0; i < attributes.length; i++) 
     { 
      GLES20.glBindAttribLocation(mProgram, i, attributes[i]); 
     } 

     GLES20.glLinkProgram(mProgram); 

    } 
    else 
    { 
     int vertexShaderHandle = MyGLRenderer.loadShader(GLES20.GL_VERTEX_SHADER, 
       vertexShaderCode); 
     int fragmentShaderHandle = MyGLRenderer.loadShader(GLES20.GL_FRAGMENT_SHADER, 
       fragmentShaderCode); 
     mProgram = GLES20.glCreateProgram(); 
     GLES20.glAttachShader(mProgram, vertexShaderHandle); 
     GLES20.glAttachShader(mProgram, fragmentShaderHandle); 
     for (int i = 0; i < attributes.length; i++) 
     { 
      GLES20.glBindAttribLocation(mProgram, i, attributes[i]); 
     } 

     GLES20.glLinkProgram(mProgram); 

    } 
} 

protected String getVertexShader() 
{ 

    // TODO: Explain why we normalize the vectors, explain some of the vector math behind it all. Explain what is eye space. 
    final String vertexShader = "uniform mat4 u_MVPMatrix;  \n" // A constant representing the combined model/view/projection matrix. 
      + "uniform mat4 u_MVMatrix;  \n" // A constant representing the combined model/view matrix. 
      + "attribute vec4 a_Position;  \n" // Per-vertex position information we will pass in. 
      + "attribute vec4 a_Color;  \n" // Per-vertex color information we will pass in. 
      + "varying vec4 v_Color;   \n" // This will be passed into the fragment shader. 

      + "void main()     \n" // The entry point for our vertex shader. 
      + "{        \n" 
      // Transform the vertex into eye space. 
      + " vec3 modelViewVertex = vec3(u_MVMatrix * a_Position);    \n" 
      // Multiply the color by the illumination level. It will be interpolated across the triangle. 
      + " v_Color = a_Color;          \n" 
      // gl_Position is a special variable used to store the final position. 
      // Multiply the vertex by the matrix to get the final point in normalized screen coordinates.  
      + " gl_Position = u_MVPMatrix * a_Position;       \n" + "}                  \n"; 

    return vertexShader; 
} 

protected String getFragmentShader() 
{ 
    final String fragmentShader = "precision mediump float;  \n" // Set the default precision to medium. We don't need as high of a 
                     // precision in the fragment shader.     
      + "varying vec4 v_Color;   \n" // This is the color from the vertex shader interpolated across the 
                // triangle per fragment.    
      + "void main()     \n" // The entry point for our fragment shader. 
      + "{        \n" + " gl_FragColor = v_Color;  \n" // Pass the color directly through the pipeline.   
      + "}        \n"; 

    return fragmentShader; 
} 

public void draw(float[] mvpMatrix) 
{ 
    // Add program to OpenGL environment 
    GLES20.glUseProgram(mProgram); 

    if (codeType == STYLE.NEW) 
    { 
     mMVPMatrixHandle = GLES20.glGetUniformLocation(mProgram, "u_MVPMatrix"); 
     mMVMatrixHandle = GLES20.glGetUniformLocation(mProgram, "u_MVMatrix"); 
     mPositionHandle = GLES20.glGetAttribLocation(mProgram, "a_Position"); 
     mColorHandle = GLES20.glGetAttribLocation(mProgram, "a_Color"); 
     // Prepare the triangle coordinate data 
     GLES20.glVertexAttribPointer(mPositionHandle, COORDS_PER_VERTEX, GLES20.GL_FLOAT, 
       false, vertexStride, vertexBuffer); 

     // Enable a handle to the triangle vertices 
     GLES20.glEnableVertexAttribArray(mPositionHandle); 

     // Pass in the color information 
     GLES20.glVertexAttribPointer(mColorHandle, COLOR_DATA_SIZE, GLES20.GL_FLOAT, false, 
       colorStride, mColors); 
     GLES20.glEnableVertexAttribArray(mColorHandle); 

     // Apply the projection and view transformation 
     GLES20.glUniformMatrix4fv(mMVPMatrixHandle, 1, false, mvpMatrix, 0); 
     MyGLRenderer.checkGlError("glUniformMatrix4fv"); 

    } 
    else 
    { 

     // get handle to vertex shader's vPosition member 
     mPositionHandle = GLES20.glGetAttribLocation(mProgram, "vPosition"); 

     // Enable a handle to the triangle vertices 
     GLES20.glEnableVertexAttribArray(mPositionHandle); 

     // Prepare the triangle coordinate data 
     GLES20.glVertexAttribPointer(mPositionHandle, COORDS_PER_VERTEX, GLES20.GL_FLOAT, 
       false, vertexStride, vertexBuffer); 

     // get handle to fragment shader's vColor member 
     mColorHandle = GLES20.glGetUniformLocation(mProgram, "vColor"); 

     // Set color for drawing the triangle 
     GLES20.glUniform4fv(mColorHandle, 1, color, 0); 

     // get handle to shape's transformation matrix 
     mMVPMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uMVPMatrix"); 
     MyGLRenderer.checkGlError("glGetUniformLocation"); 

     // Apply the projection and view transformation 
     GLES20.glUniformMatrix4fv(mMVPMatrixHandle, 1, false, mvpMatrix, 0); 
     MyGLRenderer.checkGlError("glUniformMatrix4fv"); 

    } 

    // Draw the square 
    GLES20.glDrawElements(GLES20.GL_TRIANGLE_STRIP, drawOrder.length, GLES20.GL_UNSIGNED_SHORT, 
      drawListBuffer); 

    // Disable vertex array 
    GLES20.glDisableVertexAttribArray(mPositionHandle); 
} 
} 
+1

哦,我的天哪,你需要發佈如此之少的代碼。嘗試限制自己直接暴露你的問題直接相關的代碼片段。沒有人會想通過數百行來閱讀錯誤。 –

+0

那麼大部分的代碼都與我認爲這一點有關。我不知道setLookAt是否需要更改,着色器或類 – Ion

+0

至少省略了可能定義上不相關的代碼的導入,屬性和大部分註釋部分。這大約是你發佈的三分之一到一半。 –

回答

0

跨度是以字節爲單位的屬性之間的距離,用於將多個屬性打包到同一個數組中的情況。看起來你在這裏每個屬性都使用一個數組,所以你可以傳遞0來告訴OpenGL這些屬性是緊密排列的。

您的位置和顏色數組的長度應該相同。即一種顏色的一個位置。這可能就是爲什麼顏色不會像你期望的那樣出現。

如果您希望每個面都是不同的實體顏色,請設置頂點以便每個三角形都是不同的,然後使用GL_TRIANGLES進行繪製。例如:

{ 0f, 1f, 0f, // Left 
    -1, 0f, 1f, 
    -1, 0f, -1f, 

    0f, 1f, 0f, // Right 
    1f, 0f, 1f, 
    1f, 0f, 1f, 

    0f, 1f, 0f, // Near 
-1f, 0f, 1f, 
    1f, 0f, 1f, 

    0f, 1f, 0f, // Far 
-1f, 0f, -1f, 
    1f, 0f, -1f } 

並用GL_TRIANGLES繪製。讓我們知道這是否會導致改進!

+0

我試過了,它產生了一個二維三角形http://oi39.tinypic.com/2d94iub.jpg其中1個面有2個讀數和1個綠色頂點,另一個面全是紅色。 – Ion

+0

上面劃傷我沒做得很對。它幾乎可行,我把GLES20.glDrawArrays(GLES20.GL_TRIANGLES,0,12);但有些面孔似乎沒有連接/仍未顯示 – Ion

+0

它可能是座標。嘗試下去1個三角形(GL_TRIANGLES,0,3),看看是否有效。然後增加到12,檢查每個三角形的數據是否正確。這可能有助於在論文中提出(認真!這種方法對我有用)。 –

1

您正在傳遞4個頂點和12種顏色。您將爲0-11的垂直指定1 vec4顏色,並且僅在索引0-3之間繪製三角形,因此只會使用前四種顏色。

+0

這是有道理的,所以有沒有辦法我可以將不同的顏色附加到頂點的每個面上,而不是每個頂點只有一種顏色,這樣我就可以得到只是一種顏色而不是多色的面,如下所示:http:// oi42.tinypic.com/15e8y6t.jpg 使用TRIANGLE_STRIP時 – Ion

+0

由於片段着色器中使用的顏色是「變化的」,即它是構成臉部的3個頂點的插值結果,唯一的方法你可以有自己的塊顏色的面孔,是複製組成它的頂點,使它們爲它們所屬的每個面提供不同的顏色。所以一個立方體的角落可能總共屬於6個三角形,所以它需要重複6次,每次出現都有自己的顏色。基本上我不認爲用GL_TRIANGLE_STRIP做你想做的事情是可能的,但其他答案在這裏工作。 – chrisvarnz