我在我的代碼中有一個部分,我有兩個粒子在彈性碰撞中相撞。我知道這兩個粒子的質量和半徑。我知道兩個粒子碰撞時的中心點。我知道這兩個粒子的速度(包括方向)。我想知道的是碰撞後兩個粒子的速度(包括方向),我想以有效的方式計算它。我知道這比一個計算機編程更像一個物理問題,但程序員似乎總是能找到最有效的方式做事。我用C++編程。我希望能得到任何幫助,甚至只是指引我朝着正確的方向前進。感謝您的幫助!編程3d粒子碰撞
Q
編程3d粒子碰撞
0
A
回答
0
1
確切的解決方案可以通過數學軟件(Mathematica,sagemath..etc)來解決。在這裏我使用了python軟件包sympy。該算法使用Gröbner基和Buchberger算法,它可以求解多項式方程組。
彈性碰撞的方程式爲1)動量守恆,每一個維度2)能量守恆。 3)第一顆粒的碰撞後的速度是在一個指定的單位矢量
方程看起來像這樣的方向:
爲uij:碰撞前的第i個粒子的速度的第j個分量。
vij:碰撞後第i個粒子速度的第j個分量。
N:所述單位矢量指向在第一粒子的速度的方向後碰撞
噸:第一粒子的速度的碰撞後的大小
米:質量
from sympy import *
u11,u12,u13 = symbols('u11 u12 u13')
u21,u22,u23 = symbols('u21 u22 u23')
v11,v12,v13 = symbols('v11 v12 v13')
v21,v22,v23 = symbols('v21 v22 v23')
n1,n2,n3,t= symbols('n1 n2 n3 t')
m1,m2 = symbols('m1 m2')
p1 = m1*u11 +m2*u21 - m1*v11 -m2*v21
p2 = m1*u12 +m2*u22 - m1*v12 -m2*v22
p3 = m1*u13 +m2*u23 - m1*v13 -m2*v23
e = m1*(u11**2+ u12**2 +u13**2) + m2*(u21**2+ u22**2+ u23**2) \
-(m1*(v11**2+ v12**2 +v13**2) + m2*(v21**2+ v22**2+ v23**2))
d1 =v11 - t*n1
d2 =v12 - t*n2
d3 =v13 - t*n3
s = solve([p1,p2,p3,e,d1,d2,d3], v11,v12,v13,v21,v22,v23,t, set=True)
的解決方案是:[噸,V11,V12,V13,V21,V22,V23]
2*sqrt(-m1**2*n1**2*u12**2 - m1**2*n1**2*u13**2 + 2*m1**2*n1*n2*u11*u12 + 2*m1**2*n1*n3*u11*u13 - m1**2*n2**2*u11**2 - m1**2*n2**2*u13**2 + 2*m1**2*n2*n3*u12*u13 - m1**2*n3**2*u11**2 - m1**2*n3**2*u12**2 - 2*m1*m2*n1**2*u12*u22 - 2*m1*m2*n1**2*u13*u23 + 2*m1*m2*n1*n2*u11*u22 + 2*m1*m2*n1*n2*u12*u21 + 2*m1*m2*n1*n3*u11*u23 + 2*m1*m2*n1*n3*u13*u21 - 2*m1*m2*n2**2*u11*u21 - 2*m1*m2*n2**2*u13*u23 + 2*m1*m2*n2*n3*u12*u23 + 2*m1*m2*n2*n3*u13*u22 - 2*m1*m2*n3**2*u11*u21 - 2*m1*m2*n3**2*u12*u22 + m2**2*n1**2*u11**2 - 2*m2**2*n1**2*u11*u21 + m2**2*n1**2*u12**2 - 2*m2**2*n1**2*u12*u22 + m2**2*n1**2*u13**2 - 2*m2**2*n1**2*u13*u23 + m2**2*n1**2*u21**2 + 2*m2**2*n1*n2*u21*u22 + 2*m2**2*n1*n3*u21*u23 + m2**2*n2**2*u11**2 - 2*m2**2*n2**2*u11*u21 + m2**2*n2**2*u12**2 - 2*m2**2*n2**2*u12*u22 + m2**2*n2**2*u13**2 - 2*m2**2*n2**2*u13*u23 + m2**2*n2**2*u22**2 + 2*m2**2*n2*n3*u22*u23 + m2**2*n3**2*u11**2 - 2*m2**2*n3**2*u11*u21 + m2**2*n3**2*u12**2 - 2*m2**2*n3**2*u12*u22 + m2**2*n3**2*u13**2 - 2*m2**2*n3**2*u13*u23 + m2**2*n3**2*u23**2)/(2*m1*n1**2 + 2*m1*n2**2 + 2*m1*n3**2 + 2*m2*n1**2 + 2*m2*n2**2 + 2*m2*n3**2) + (m1*n1*u11 + m1*n2*u12 + m1*n3*u13 + m2*n1*u21 + m2*n2*u22 + m2*n3*u23)/((m1 + m2)*(n1**2 + n2**2 + n3**2))
n1*(m1*n1*u11 + m1*n2*u12 + m1*n3*u13 + m2*n1*u21 + m2*n2*u22 + m2*n3*u23 + sqrt(-m1**2*n1**2*u12**2 - m1**2*n1**2*u13**2 + 2*m1**2*n1*n2*u11*u12 + 2*m1**2*n1*n3*u11*u13 - m1**2*n2**2*u11**2 - m1**2*n2**2*u13**2 + 2*m1**2*n2*n3*u12*u13 - m1**2*n3**2*u11**2 - m1**2*n3**2*u12**2 - 2*m1*m2*n1**2*u12*u22 - 2*m1*m2*n1**2*u13*u23 + 2*m1*m2*n1*n2*u11*u22 + 2*m1*m2*n1*n2*u12*u21 + 2*m1*m2*n1*n3*u11*u23 + 2*m1*m2*n1*n3*u13*u21 - 2*m1*m2*n2**2*u11*u21 - 2*m1*m2*n2**2*u13*u23 + 2*m1*m2*n2*n3*u12*u23 + 2*m1*m2*n2*n3*u13*u22 - 2*m1*m2*n3**2*u11*u21 - 2*m1*m2*n3**2*u12*u22 + m2**2*n1**2*u11**2 - 2*m2**2*n1**2*u11*u21 + m2**2*n1**2*u12**2 - 2*m2**2*n1**2*u12*u22 + m2**2*n1**2*u13**2 - 2*m2**2*n1**2*u13*u23 + m2**2*n1**2*u21**2 + 2*m2**2*n1*n2*u21*u22 + 2*m2**2*n1*n3*u21*u23 + m2**2*n2**2*u11**2 - 2*m2**2*n2**2*u11*u21 + m2**2*n2**2*u12**2 - 2*m2**2*n2**2*u12*u22 + m2**2*n2**2*u13**2 - 2*m2**2*n2**2*u13*u23 + m2**2*n2**2*u22**2 + 2*m2**2*n2*n3*u22*u23 + m2**2*n3**2*u11**2 - 2*m2**2*n3**2*u11*u21 + m2**2*n3**2*u12**2 - 2*m2**2*n3**2*u12*u22 + m2**2*n3**2*u13**2 - 2*m2**2*n3**2*u13*u23 + m2**2*n3**2*u23**2))/(m1*n1**2 + m1*n2**2 + m1*n3**2 + m2*n1**2 + m2*n2**2 + m2*n3**2)
n2*(m1*n1*u11 + m1*n2*u12 + m1*n3*u13 + m2*n1*u21 + m2*n2*u22 + m2*n3*u23 + sqrt(-m1**2*n1**2*u12**2 - m1**2*n1**2*u13**2 + 2*m1**2*n1*n2*u11*u12 + 2*m1**2*n1*n3*u11*u13 - m1**2*n2**2*u11**2 - m1**2*n2**2*u13**2 + 2*m1**2*n2*n3*u12*u13 - m1**2*n3**2*u11**2 - m1**2*n3**2*u12**2 - 2*m1*m2*n1**2*u12*u22 - 2*m1*m2*n1**2*u13*u23 + 2*m1*m2*n1*n2*u11*u22 + 2*m1*m2*n1*n2*u12*u21 + 2*m1*m2*n1*n3*u11*u23 + 2*m1*m2*n1*n3*u13*u21 - 2*m1*m2*n2**2*u11*u21 - 2*m1*m2*n2**2*u13*u23 + 2*m1*m2*n2*n3*u12*u23 + 2*m1*m2*n2*n3*u13*u22 - 2*m1*m2*n3**2*u11*u21 - 2*m1*m2*n3**2*u12*u22 + m2**2*n1**2*u11**2 - 2*m2**2*n1**2*u11*u21 + m2**2*n1**2*u12**2 - 2*m2**2*n1**2*u12*u22 + m2**2*n1**2*u13**2 - 2*m2**2*n1**2*u13*u23 + m2**2*n1**2*u21**2 + 2*m2**2*n1*n2*u21*u22 + 2*m2**2*n1*n3*u21*u23 + m2**2*n2**2*u11**2 - 2*m2**2*n2**2*u11*u21 + m2**2*n2**2*u12**2 - 2*m2**2*n2**2*u12*u22 + m2**2*n2**2*u13**2 - 2*m2**2*n2**2*u13*u23 + m2**2*n2**2*u22**2 + 2*m2**2*n2*n3*u22*u23 + m2**2*n3**2*u11**2 - 2*m2**2*n3**2*u11*u21 + m2**2*n3**2*u12**2 - 2*m2**2*n3**2*u12*u22 + m2**2*n3**2*u13**2 - 2*m2**2*n3**2*u13*u23 + m2**2*n3**2*u23**2))/(m1*n1**2 + m1*n2**2 + m1*n3**2 + m2*n1**2 + m2*n2**2 + m2*n3**2)
n3*(m1*n1*u11 + m1*n2*u12 + m1*n3*u13 + m2*n1*u21 + m2*n2*u22 + m2*n3*u23 + sqrt(-m1**2*n1**2*u12**2 - m1**2*n1**2*u13**2 + 2*m1**2*n1*n2*u11*u12 + 2*m1**2*n1*n3*u11*u13 - m1**2*n2**2*u11**2 - m1**2*n2**2*u13**2 + 2*m1**2*n2*n3*u12*u13 - m1**2*n3**2*u11**2 - m1**2*n3**2*u12**2 - 2*m1*m2*n1**2*u12*u22 - 2*m1*m2*n1**2*u13*u23 + 2*m1*m2*n1*n2*u11*u22 + 2*m1*m2*n1*n2*u12*u21 + 2*m1*m2*n1*n3*u11*u23 + 2*m1*m2*n1*n3*u13*u21 - 2*m1*m2*n2**2*u11*u21 - 2*m1*m2*n2**2*u13*u23 + 2*m1*m2*n2*n3*u12*u23 + 2*m1*m2*n2*n3*u13*u22 - 2*m1*m2*n3**2*u11*u21 - 2*m1*m2*n3**2*u12*u22 + m2**2*n1**2*u11**2 - 2*m2**2*n1**2*u11*u21 + m2**2*n1**2*u12**2 - 2*m2**2*n1**2*u12*u22 + m2**2*n1**2*u13**2 - 2*m2**2*n1**2*u13*u23 + m2**2*n1**2*u21**2 + 2*m2**2*n1*n2*u21*u22 + 2*m2**2*n1*n3*u21*u23 + m2**2*n2**2*u11**2 - 2*m2**2*n2**2*u11*u21 + m2**2*n2**2*u12**2 - 2*m2**2*n2**2*u12*u22 + m2**2*n2**2*u13**2 - 2*m2**2*n2**2*u13*u23 + m2**2*n2**2*u22**2 + 2*m2**2*n2*n3*u22*u23 + m2**2*n3**2*u11**2 - 2*m2**2*n3**2*u11*u21 + m2**2*n3**2*u12**2 - 2*m2**2*n3**2*u12*u22 + m2**2*n3**2*u13**2 - 2*m2**2*n3**2*u13*u23 + m2**2*n3**2*u23**2))/(m1*n1**2 + m1*n2**2 + m1*n3**2 + m2*n1**2 + m2*n2**2 + m2*n3**2)
(-m1**2*n1*n2*u12 - m1**2*n1*n3*u13 + m1**2*n2**2*u11 + m1**2*n3**2*u11 + m1*m2*n1**2*u11 - m1*m2*n1*n2*u22 - m1*m2*n1*n3*u23 + m1*m2*n2**2*u11 + m1*m2*n2**2*u21 + m1*m2*n3**2*u11 + m1*m2*n3**2*u21 - m1*n1*sqrt(-m1**2*n1**2*u12**2 - m1**2*n1**2*u13**2 + 2*m1**2*n1*n2*u11*u12 + 2*m1**2*n1*n3*u11*u13 - m1**2*n2**2*u11**2 - m1**2*n2**2*u13**2 + 2*m1**2*n2*n3*u12*u13 - m1**2*n3**2*u11**2 - m1**2*n3**2*u12**2 - 2*m1*m2*n1**2*u12*u22 - 2*m1*m2*n1**2*u13*u23 + 2*m1*m2*n1*n2*u11*u22 + 2*m1*m2*n1*n2*u12*u21 + 2*m1*m2*n1*n3*u11*u23 + 2*m1*m2*n1*n3*u13*u21 - 2*m1*m2*n2**2*u11*u21 - 2*m1*m2*n2**2*u13*u23 + 2*m1*m2*n2*n3*u12*u23 + 2*m1*m2*n2*n3*u13*u22 - 2*m1*m2*n3**2*u11*u21 - 2*m1*m2*n3**2*u12*u22 + m2**2*n1**2*u11**2 - 2*m2**2*n1**2*u11*u21 + m2**2*n1**2*u12**2 - 2*m2**2*n1**2*u12*u22 + m2**2*n1**2*u13**2 - 2*m2**2*n1**2*u13*u23 + m2**2*n1**2*u21**2 + 2*m2**2*n1*n2*u21*u22 + 2*m2**2*n1*n3*u21*u23 + m2**2*n2**2*u11**2 - 2*m2**2*n2**2*u11*u21 + m2**2*n2**2*u12**2 - 2*m2**2*n2**2*u12*u22 + m2**2*n2**2*u13**2 - 2*m2**2*n2**2*u13*u23 + m2**2*n2**2*u22**2 + 2*m2**2*n2*n3*u22*u23 + m2**2*n3**2*u11**2 - 2*m2**2*n3**2*u11*u21 + m2**2*n3**2*u12**2 - 2*m2**2*n3**2*u12*u22 + m2**2*n3**2*u13**2 - 2*m2**2*n3**2*u13*u23 + m2**2*n3**2*u23**2) + m2**2*n1**2*u21 + m2**2*n2**2*u21 + m2**2*n3**2*u21)/(m2*(m1*n1**2 + m1*n2**2 + m1*n3**2 + m2*n1**2 + m2*n2**2 + m2*n3**2))
(m1**2*n1**2*u12 - m1**2*n1*n2*u11 - m1**2*n2*n3*u13 + m1**2*n3**2*u12 + m1*m2*n1**2*u12 + m1*m2*n1**2*u22 - m1*m2*n1*n2*u21 + m1*m2*n2**2*u12 - m1*m2*n2*n3*u23 + m1*m2*n3**2*u12 + m1*m2*n3**2*u22 - m1*n2*sqrt(-m1**2*n1**2*u12**2 - m1**2*n1**2*u13**2 + 2*m1**2*n1*n2*u11*u12 + 2*m1**2*n1*n3*u11*u13 - m1**2*n2**2*u11**2 - m1**2*n2**2*u13**2 + 2*m1**2*n2*n3*u12*u13 - m1**2*n3**2*u11**2 - m1**2*n3**2*u12**2 - 2*m1*m2*n1**2*u12*u22 - 2*m1*m2*n1**2*u13*u23 + 2*m1*m2*n1*n2*u11*u22 + 2*m1*m2*n1*n2*u12*u21 + 2*m1*m2*n1*n3*u11*u23 + 2*m1*m2*n1*n3*u13*u21 - 2*m1*m2*n2**2*u11*u21 - 2*m1*m2*n2**2*u13*u23 + 2*m1*m2*n2*n3*u12*u23 + 2*m1*m2*n2*n3*u13*u22 - 2*m1*m2*n3**2*u11*u21 - 2*m1*m2*n3**2*u12*u22 + m2**2*n1**2*u11**2 - 2*m2**2*n1**2*u11*u21 + m2**2*n1**2*u12**2 - 2*m2**2*n1**2*u12*u22 + m2**2*n1**2*u13**2 - 2*m2**2*n1**2*u13*u23 + m2**2*n1**2*u21**2 + 2*m2**2*n1*n2*u21*u22 + 2*m2**2*n1*n3*u21*u23 + m2**2*n2**2*u11**2 - 2*m2**2*n2**2*u11*u21 + m2**2*n2**2*u12**2 - 2*m2**2*n2**2*u12*u22 + m2**2*n2**2*u13**2 - 2*m2**2*n2**2*u13*u23 + m2**2*n2**2*u22**2 + 2*m2**2*n2*n3*u22*u23 + m2**2*n3**2*u11**2 - 2*m2**2*n3**2*u11*u21 + m2**2*n3**2*u12**2 - 2*m2**2*n3**2*u12*u22 + m2**2*n3**2*u13**2 - 2*m2**2*n3**2*u13*u23 + m2**2*n3**2*u23**2) + m2**2*n1**2*u22 + m2**2*n2**2*u22 + m2**2*n3**2*u22)/(m2*(m1*n1**2 + m1*n2**2 + m1*n3**2 + m2*n1**2 + m2*n2**2 + m2*n3**2))
(m1**2*n1**2*u13 - m1**2*n1*n3*u11 + m1**2*n2**2*u13 - m1**2*n2*n3*u12 + m1*m2*n1**2*u13 + m1*m2*n1**2*u23 - m1*m2*n1*n3*u21 + m1*m2*n2**2*u13 + m1*m2*n2**2*u23 - m1*m2*n2*n3*u22 + m1*m2*n3**2*u13 - m1*n3*sqrt(-m1**2*n1**2*u12**2 - m1**2*n1**2*u13**2 + 2*m1**2*n1*n2*u11*u12 + 2*m1**2*n1*n3*u11*u13 - m1**2*n2**2*u11**2 - m1**2*n2**2*u13**2 + 2*m1**2*n2*n3*u12*u13 - m1**2*n3**2*u11**2 - m1**2*n3**2*u12**2 - 2*m1*m2*n1**2*u12*u22 - 2*m1*m2*n1**2*u13*u23 + 2*m1*m2*n1*n2*u11*u22 + 2*m1*m2*n1*n2*u12*u21 + 2*m1*m2*n1*n3*u11*u23 + 2*m1*m2*n1*n3*u13*u21 - 2*m1*m2*n2**2*u11*u21 - 2*m1*m2*n2**2*u13*u23 + 2*m1*m2*n2*n3*u12*u23 + 2*m1*m2*n2*n3*u13*u22 - 2*m1*m2*n3**2*u11*u21 - 2*m1*m2*n3**2*u12*u22 + m2**2*n1**2*u11**2 - 2*m2**2*n1**2*u11*u21 + m2**2*n1**2*u12**2 - 2*m2**2*n1**2*u12*u22 + m2**2*n1**2*u13**2 - 2*m2**2*n1**2*u13*u23 + m2**2*n1**2*u21**2 + 2*m2**2*n1*n2*u21*u22 + 2*m2**2*n1*n3*u21*u23 + m2**2*n2**2*u11**2 - 2*m2**2*n2**2*u11*u21 + m2**2*n2**2*u12**2 - 2*m2**2*n2**2*u12*u22 + m2**2*n2**2*u13**2 - 2*m2**2*n2**2*u13*u23 + m2**2*n2**2*u22**2 + 2*m2**2*n2*n3*u22*u23 + m2**2*n3**2*u11**2 - 2*m2**2*n3**2*u11*u21 + m2**2*n3**2*u12**2 - 2*m2**2*n3**2*u12*u22 + m2**2*n3**2*u13**2 - 2*m2**2*n3**2*u13*u23 + m2**2*n3**2*u23**2) + m2**2*n1**2*u23 + m2**2*n2**2*u23 + m2**2*n3**2*u23)/(m2*(m1*n1**2 + m1*n2**2 + m1*n3**2 + m2*n1**2 + m2*n2**2 + m2*n3**2))
相關問題
- 1. 粒子碰撞
- 2. AndEngine粒子碰撞
- 3. 粒子(布)與球碰撞
- 4. Unity - 棘手的粒子碰撞
- 5. Java OpenGL 3D碰撞
- 6. 的Python:最佳顆粒自碰撞/三角形碰撞算法
- 7. 3D粒子球
- 8. LWJGL 3D碰撞檢測
- 9. Java-3d碰撞檢測
- 10. OpenGL中的3D碰撞
- 11. Unity 3D對象碰撞
- 12. 在3D中實現碰撞
- 13. OpenGL 3D碰撞檢測
- 14. 邊界框碰撞-3D XNA
- 15. LibGDX 3D碰撞檢測
- 16. C#碰撞編程 - 動量
- 17. 子彈碰撞
- 18. 3D碰撞網格(更有效的碰撞計算)
- 19. Andengine粒子碰撞的影響(安卓遊戲開發)
- 20. Unity 2D粒子碰撞沒有得到事件
- 21. 檢測碰撞的粒子和風力作用
- 22. 粒子效果像chillingo的碰撞效果
- 23. 爲什麼我的粒子系統碰撞不起作用?
- 24. 使用Cocos2d中的粒子進行碰撞檢測
- 25. 在JavaScript/canvas粒子系統中處理碰撞
- 26. 點三角形碰撞檢測的3D
- 27. XNA 4.0中的3D碰撞檢測
- 28. xna 4.0 3D碰撞的方法?
- 29. 相機在統一碰撞3d
- 30. java-3d中的碰撞檢測?
讀我[本](http://www.gamasutra.com/view/feature/131424/pool_hall_lessons_fast_accurate_.php?page=1)的方式回來的時候,IIRC是準確和有用的。但關閉主題。 – GManNickG